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Параллакс

• Параллакс - видимое смещение объекта в зависимости от точки 

обзора

• Чем объект ближе, тем смещение больше



Многовидовая геометрия
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Движение проекций 3D точек, вызванное 

движением камеры, позволяет 

определить координаты 3D точек 

(структуру, structure) и само движение 

камеры (движение, motion).

Это задача «структура из движения» 

(structure from motion)



Формулировка задачи структуры из движения

• Дано: m изображений n фиксированных 3D точек 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Задача: оценить m - матриц проекции Pi и n - 3D точек Xj из mn 

соответствий xij
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Целевая функция
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Оптимальная целевая функция – сумма 

ошибок репроекций 3D точек X на все 

изображения:
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• Нелинейная целевая функция с большим количеством параметров

• 3n точек

• 6m параметров для калиброванного случая, 11m для некалиброванного

• Можно решить градиентным спуском, но плохо – масса локальных минимумов

• Поэтому нужно получить хорошее начальное приближение, в этом основная проблема

• Поэтому задачу декомпозируем на более простые подзадачи



Геометрия 2х камер

Эпиполярная геометрия Гомография

• Многовидовая геометрия позволяет установить взаимосвязи между 

точками разных изображений, параметрами камер и 3D точками сцены

• Мы будем рассматривать случай 2х камер



Эпиполярная геометрия



Система из 2х камер

Рассмотрим случай, когда два снимка одной и той же
сцены получены с разных ракурсов (разные центры
проекций)



• Эпиполярная плоскость (Epipolar Plane) – плоскость, проходящая через 

базовую линию (пучок плоскостей))
• Эпиполи/Эпиполяры (Epipoles) 

= пересечение базовой линии с картинными плоскостями 

= проекции центра проекций второй камеры

• Эпиполярные линии (Epipolar Lines) – пересечение эпиполярной плоскости с 

картинной плоскостью (дают соответствующие пары)

• Базовая линия (Baseline) – линия, соединяющая центры камер

Эпиполярная геометрия
X

x x’



Эпиполярное ограничение
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• Пусть даны изображения I и I’ с центрами проекции O и О’, и проекция x точки 

X (неизвестной) на изображение I. 

• Что мы можем сказать про точку x’ – проекцию X на I’?

• x’ должна лежать на эпиполярной линии l’ 

• Эпиполярное ограничение:

• Проекции x и x’ точки сцены X на изображения I и I’ должны лежать на 

соответствующих эпиполярных линиях l и l’



Пример: сближающиеся камеры



Пример: стереопара

Движение, параллельное картинной плоскости
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Пример: движение вперед

У эпиполей одинаковые координаты в 

обоих изображениях.

Точки движутся вдоль линий, 

исходящих из e – «фокуса 

расширения»



Фундаментальная и существенная матрицы



Эпиполярное ограничение
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• Интересный вывод:

• Линия l’ не зависит от X, если x и калибровка камер известна

• Линия l не зависит от X, если x’ и калибровка камер известна

• Между x, x’ и калибровкой камер существует зависимость

• Можем вывести эту зависимость
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Калиброванный случай

• Совместим глобальную систему координат с координатной системой первой 
камеры 

• Допустим, известны внутренние калибровки камер K, K’ и внешняя калибровка 
второй камеры R и T

• Умножим матрицу проекции каждой камеры на обратную матрицу калибровки 
K-1, K’-1

•  Также отобразим точки x, x’ с изображения на картинную плоскость



X

x x’

Калиброванный случай

Матрица камеры #1: [I|0]

X = (u, v, w, 1)T

x = (u, v, w)T

Матрица камеры #2:[RT | –RTt]
R

t

Вектора x, t, и Rx’ копланарны 

= RX’ + t

Вектор x’ во второй 

системе координат 

имеет координаты Rx’ 

в первой
Рассмотрим 3 вектора: Ox, OO’, и O’x’



Существенная матрица 

(Essential Matrix)

(Longuet-Higgins, 1981)

Калиброванный случай
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Вектора x, t, и Rx’ копланарны 



X
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Свойства существенной матрицы

•E x’ - эпиполярная линия, соответствующая x’ (l = E x’)

•ETx - эпиполярная линия, соответствующая x (l’ = ETx)

•E e’ = 0   и   ETe = 0

•E вырождена (ранг 2)

•E имеет 5 степеней свободы

0)]([ = xRtx RtEгдеxExT ][0 ==



Простейший случай параллельных камер

• Вторая камера не повёрнута 

относительно первой

• Смещение второй камеры 

относительно первой строго по 

горизонтали

• Внутренняя калибровка одинакова

• Эпиполярные линии расположены 

вдоль строк изображений



Простейший случай параллельных камер
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Некалиброванный случай

•Пусть матрицы калибровки K и K’ для обеих камер неизвестны

•Запишем эпиполярное ограничение через неизвестные
нормализованные координаты:

X

x x’

0ˆˆ =xExT xKxxKx == ˆ,ˆ



Некалиброванный случай

0ˆˆ =xExT
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Фундаментальная матрица

(Fundamental Matrix)
(Faugeras and Luong, 1992)
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Свойства

0ˆˆ =xExT 10 −− == KEKFгдеxFx TT

• F x - эпиполярная линия, соответствующая x’ (l = F x’)

• FTx - эпиполярная линия, соответствующая x (l’ = FTx)

• F e’ = 0   и   FTe = 0

• F вырождена (ранг 2)

• F имеет семь степеней свободы

X

x x’



• Базовая линия (Baseline)

• Эпиполярная плоскость 

(Epipolar Plane)

• Эпиполи/Эпиполяры (Epipoles) 

• Эпиполярные линии (Epipolar 

Lines)

Резюме эпиполярной геометрии

Пара камер порождает «эпиполярную геометрию», т.е. зависимость между 

парами соответствующих точек и калибровкой камер
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10 −− == KEKFгдеxFx TT

Существенная матрица 
(калиброванный случай):

Фундаментальная матрица 
(некалиброванный случай):

Существенная и фундаментальная матрицы описывают зависимости между 
калибровкой камер и парам соответствующих точек на изображениях 



Зачем считать фундаментальную матрицу?



Оценка движения камеры

• Движение камеры – поворот и сдвиг 

одной камеры относительно другой

• Вспомним, что 𝐸 = [𝑡×]𝑅, т.е. 

существенная матрица определяется 

как раз движением камеры

• Вспомним, что 𝐹 = 𝐾−𝑇𝐸𝐾′−1

• Значит, если мы знаем 𝐹 и 𝐾, 𝐾′, то 

можем вычислить 𝐸

• 𝐾 можно получить из EXIF в jpg

файлах

• 𝐸 можем факторизовать и получить R 

и T (c точностью до масштаба)

Наблюдение 3Д сцены с 

нескольких ракурсов (камер)



Проверка эпиполярного ограничения

• Пусть (x,x’) – пара соответствующих точек на 2х изображениях

• Тогда должно выполняться 𝑥𝑇𝐹𝑥′ = 0

• Если не соблюдается, значит (x,x’) – ложное соответствие!

Что нам даёт 
известная 𝐹?



Проверка эпиполярного ограничения

Что нам даёт 
известная 𝐹?

• 𝑥𝑇𝐹𝑥′ - алгебраическая ошибка, не имеющая физического смысла
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• «Оптимальная ошибка» - сумма квадратов расстояний от 

измеренных точек, до «идеальных»

,где



Проверка эпиполярного ограничения

Что нам даёт 
известная 𝐹?

• Вычисление оптимальной ошибки сложное, требует нелинейной 

оптимизации из-за необходимости найти «идеальную» пару для каждой 

измеренной

• Поэтому чаще считают ошибку переноса (transfer error)

 
=

+
N

i

i

T

iii xFxFxx
1

22 )ˆ,(d),(d



Оценка фундаментальной матрицы



8-и точечный алгоритм

•  Даны соответствия (x,x’): x = (u, v, 1)T,   x’ = (u’, v’, 1)T

•  1 cсоответствие даёт 1 уравнение на F

• Если точек много, можем свести к обычной задаче однородных 

наименьших квадратов

• Фундаментальная матрица накладывает ограничения на пары 

соответствующих точек 𝑥𝑇𝐹𝑥′ = 0
• Попробуем её вычислить напрямую из соответствий, без 

калибровки камеры  



8-и точечный алгоритм

Минимизируем:

При условии

|F|2 = 1
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•Можно решать как однородную систему 

уравнений, так и неоднородную



Недостатки 8и точечного метода



Недостатки 8и точечного метода

• Плохая численная обусловленность

• Можно поправить масштабированием данных

• После масштабирования среднее точек должно быть в 0, средняя 

длина 2



Приведение к рангу 2

• Фундаментальная матрица F имеет ранг 2

• В общем случае, результат DLT-оценки F имеет ранг 3 (из-за 

влияния шума)

• Необходимо привести к рангу 2

• Найдем F’, минимизирующую норму Фробениуса:

• Воспользуемся SVD-разложением:

• F=UDVT, или F = Udiag(r,s,t)VT, где 

• F’= = Udiag(r,s,0)VT

2)rang(F' , =− гдеFF

tsr 



Оценка на практике

• Множество соответствий (N>8), в которых могут быть ошибки

• Нужно использовать робастные методы

• Например, RANSAC c ошибкой переноса:

• Затем уточняют по всем найденным корректным соответствиям

• В начале линейным методом

• Потом нелинейной оптимизацией с ошибкой переноса или оптимальной 

ошибкой 
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Нейросети для оценки фундаментальной матрицы

• Напрямую оценивать F по изображениям без особых точек не получается

• Ищут подходы, которые используют нейросети в рамках существующего подхода

• Например, можно представить решение задачи в виде обобщённых взвешенных 

МНК:

Rene Ranftl, Vladlen Koltun. Deep Fundamental Matrix Estimation. ECCV 2018

Нейросеть можно использовать 

для предсказания весов

https://openaccess.thecvf.com/content_ECCV_2018/html/Rene_Ranftl_Deep_Fundamental_Matrix_ECCV_2018_paper.html


Гомография



Вырожденный случай плоской сцены

Модель преобразования 

плоскости при перспективном 

преобразовании называется 

гомография (homography) 
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Частный случай: 

• Пусть точка X лежит на плоскости

• Выберем специальную мировую систему координат



Общий случай гомографии
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• В общем случае 

гомография также 

описывается матрицей 3x3

•8 степеней свободы



Примение гомографии

Плоская сцена Камера на штативе

Вывод: если преобразование одного изображения в другое хорошо 

описывается гомографией, то мы либо наблюдаем плоскую сцену, 

либо центры проекций камер близки 



Оценка гомографии



Начнём с линейного подхода (DLT)
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• Гомография – линейное 

преобразование в 

однородных координатах

•8 степеней свободы

• Возьмём соответствия и 

составим систему 

уравнений



Линейный метод



Линейный метод

• 3е уравнение – линейная комбинация 1 и 2го

• Поэтому 1 пара соответствующих точек даёт 2 уравнения на H

• Из 4х пар точек получаем систему вида Ah = 0 при h = 1

• Можем решить через SVD-разложение

• 𝐴 = 𝑈𝑆𝑉𝑇

• h – последний столбец V



Ошибка переноса:

Геометрическая ошибка:

Оценка качества гомографии
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Вычисление гомографии на практике

• Множество соответствий (N>4), в которых могут быть ошибки

• Нужно использовать робастные методы

• Например, RANSAC c ошибкой переноса:

• Затем уточняют по всем найденным корректным соответствиям

• В начале линейным методом

• Потом нелинейной оптимизацией с ошибкой переноса или оптимальной 

ошибкой 

),(),( 122

ii

i

ii xxHdHxxd + −



Оценка гомографии через нейросети



Параметризация гомографии

https://github.com/JirongZhang/DeepHomography

https://github.com/JirongZhang/DeepHomography


Нейросетевая модель

Нейросеть

Варианты предсказания результатов

https://github.com/JirongZhang/DeepHomography

https://github.com/JirongZhang/DeepHomography


Сравнение моделей

Точки + RANSAC Нейросетевая модель



Сравнение моделей

Точки + RANSAC Нейросетевая модель



Перспективные поля

• Оценка всего 4х точек чувствительна к ошибкам в каждой из них.

• Давайте оценивать вектора сдвигов для каждого пиксела (Perspective Fields)

• Для каждого пиксела это даст предсказание соответствующей точки 

• По множеству точек с помощью RANSAC мы можем оценить гомографию

R.Zeng et.al. Rethinking Planar Homography Estimation Using Perspective Fields. ACCV 2018

https://eprints.qut.edu.au/126933/1/0654.pdf


Оценка PF

• Для оценки PF нужно использовать попиксельную модель, Encoder-Decoder

• На некоторых бенчмарках это SotA( 18.02.2022)

https://github.com/ruizengalways/PFNet 

https://github.com/ruizengalways/PFNet


Триангуляция



Триангуляция («структура» сцены)

Даны проекции x1, x2 точки X=(X,Y,Z) на 2 или более изображения 

(с известными матрицами калибровки), найти координаты точки

C1
C2

x1
x2

X?



DLT метод

• P и (x,y) известны, нужно найти (X,Y,Z)

• Уравнение перспективной проекции:

• Для 1 камеры получаем 2 уравнения на (X,Y,Z)

• Т.е. нужны минимум 2 камеры для оценки 3Д координат точки 

линейным методом

• Дальше всё как обычно, сведение к МНК
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Метод «золотого стандарта»
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Найти точку X, минимизирующую ошибку репроекции:

• Результат DLT используем как начальное приближение

• Требует применение нелинейной оптимизации
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Задача структуры и движения



Разреженная 3D реконструкция

• Опираемся на сопоставление ключевых точек между изображениями

• 3D реконструкция в форме облака точек, соответствующих найденным 

ключевым точкам на изображениях 

• Решаем совместно определение 3Д точек, соответствующих ключевым, и 

положение камер в пространстве относительно них

• 3D реконструкция – обратная задача к задаче компьютерной графики

Point features and matching Camera localization and structure estimation



Формулировка задачи

• Дано: m изображений n фиксированных 3D точек 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Задача: оценить m - матриц проекции Pi и n - 3D точек Xj из mn 

соответствий xij
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Целевая функция
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Оптимальная целевая функция – сумма 

ошибок репроекций 3D точек X на все 

изображения:

x1j

x2j

x
3j

Xj

P1
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P1Xj

P2Xj

P3Xj

• Нелинейная целевая функция с большим количеством параметров

• 3n точек

• 6m параметров для калиброванного случая, 11m для некалиброванного

• Решается градиентным спуском, но плохо – масса локальных минимумов

• Поэтому нужно получить хорошее начальное приближение, в этом основная 

проблема



Калиброванный случай
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Оптимальная целевая 

функция – сумма ошибок 

репроекций 3D точек X на все 

изображения:
x1j

x2j

x3j
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• Будем рассматривать случай, когда известны внутренние калибровки всех 

камер Ki

• Тогда мы можем вычислять существенную матрицу между двумя видами по 

соответствиям, т.е. оценивать напрямую внешнюю калибровку камеры

• Составим алгоритм для получения начального приближения и уточним 

результат градиентным спуском



Последовательный подход

• Выберем какие-то 2 камеры

• Инициализируем движение 

через существенную матрицу 

двух камер

• Инициализируем структуру

• Для каждого следующего вида:

• Оцениваем матрицу 

проекции новой камеры по 

всем известным 3D точкам, 

видимым на этом 

изображении – калибровка
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Последовательный подход

• Выберем какие-то 2 камеры

• Инициализируем движение через 

существенную матрицу двух камер

• Инициализируем структуру

•Для каждого следующего вида:

•Оцениваем матрицу проекции 

новой камеры по всем 

известным 3D точкам, видимым 

на этом изображении –

калибровка

•Уточняем и дополняем 

структуру, вычисляем новые 3D 

точки, уточняем существующие 

точки, видимые на камере -

триангуляция
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Последовательный подход

• Выберем какие-то 2 камеры

• Инициализируем движение через 

существенную матрицу двух камер

• Инициализируем структуру

• Для каждого следующего вида:

•Оцениваем матрицу проекции 

новой камеры по всем известным 

3D точкам, видимым на этом 

изображении – калибровка

•Уточняем и дополняем структуру, 

вычисляем новые 3D точки, 

уточняем существующие точки, 

видимые на камере - триангуляция

•Уточняем структуру и в движение 

методом связок
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Метод связок (Bundle adjustment) 
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• Нелинейный метод для уточнения структуры и движения

• Минимизируем сумму ошибок проекций всех точек на все 

камеры:
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Неоднозначность решения
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•Если мы умножим всю сцену на некоторый коэффициент k и в то 

же время умножим матрицы камер на 1/k, проекции точек сцены 

на изображения не изменятся:

Вывод: оценить абсолютный масштаб (размеры) сцены только по 

изображениям невозможно! 

Нужна дополнительная информация



Фотограмметрия

Чтобы провести измерения по изображениям (задача 

фотограмметрии), необходимо знать расстояние между минимум 

2мя точками для нормализации сцены



Резюме

• Многовидовая геометрия позволяет установить взаимосвязи между точками разных 

изображений, параметрами камер и 3D точками сцены

• При наблюдении сцены с 2х ракурсов возникает эпиполярная геометрия

• Взаимосвязи эпиполярной геометрии можно описать фундаментальной и 

существенной матрицей

• Существенная матрица зависит от движения камеры, её оценка позволяет оценить 

движение между ракурсами

• Гомография описывает вырожденные случаи движения камеры

• Для гомографии предложили нейросетевые модели, позволяющие предсказывать 

параметры гомографии по 2м кадрам

• Триангуляция позволяет оценить структуру сцены

• Общая задача структуры и движения может решаться итеративным методом, через 

последовательное решение задач оценки движения и структуры

• Совместное уточнение структуры и движения называется методом связок (Bundle 

Adjustment) 
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