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Simultaneous Localization and Mapping (SLAM)

Комбинация Одометрии (оценки траектории движения камеры), 

Картографирования (построения карты сцены), Локализации (оценки положения 

по карте), Закрытия циклов / Loop Closure

Карта какой-то квартиры Карта и 
траектория

Если по данным камеры, тогда говорят Visual SLAM. Но могут использоваться и 

другие сенсоры (IMU, 2D Lidar, 3D Lidar, и т.д.)



SfM vs. SLAM

SfM

• Input is unordered set of images

• Focus is on precision, with aim to 

produce a good 3D model

• Offline, one-time process

• Published mainly in vision conferences

• 3 papers with more than 1000 citations

• Complicated

SLAM

• Input is stream of images, stereo, or 

depth and sometimes IMU

• Focus is on speed and robustness, 

with aim to localize camera or robot

• Online process, possibly with 

relocalization

• Published mainly in robotics 

conferences

• 8 papers with more than 1000 citations

• Very complicated



Semantic SLAM

• Semantic SLAM или Total Scene Understanding

• Одновременное распознавание сцены и SLAM, что дает полный ответ на вопрос 

«что где расположено» про всю сцену

Example of semantic SLAM Volumetric semantic map
Source: https://arxiv.org/pdf/1801.07380.pdf

Source: https://natanaso.github.io

Semantic segmentation



Оценка качества

«Карта» обычно представлена в виде набора ключевых кадров с позами и 

облаком точек. Непонятно, как оценивать точности таких карт. Поэтому 

качество SLAM обычно оценивают по траекториям

Sparse point cloud from 
monocular RGB images

Dense point cloud from RGBD 
video



Семантические карты

• Если карты строятся, то обычно они строятся в виде 2Д изображений.

• Для оценки точности требуется эталонная разметка этих карт

Occupancy grid map Occupancy grid map with 
semantic labels

Vector map with 
labels



Классический SLAM



Классический Visual SLAM

• Классическими можно назвать методы, опирающиеся на точечные соответствия между 

изображениями, многовидовую геометрию и уточнение градиентной оптимизацией

• Фокус на последовательную обработку кадров и работу в реальном времени

Точки и их сопоставление Локализация камеры и структура из 
движения



ORBSLAM

R.Mur-Artal, J.M.M.Montiel, J.D. Tardos. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on robotics, 2015 

• Первая работа цикла открытых реализацией 

SLAM-методов

• https://github.com/raulmur/ORB_SLAM 

• Опирается на быстрый детектор ORB

• Карта сцены описывается набором ключевых 

кадров и набором 3д точек, наблюдаемых на 

этих кадрах

• 3 нити исполнения (Tracking, Local Mapping, 

Loop Closing), работающие параллельно

• Tracking – отслеживание точек и оценка позы 

камеры в локальной карте

• Local Mapping – добавление нового 

ключевого кадра в карту и последствия этого

• Loop Closure – определение циклов и 

уточнение карты и траектории из-за этого

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7219438
https://github.com/raulmur/ORB_SLAM


ORB (Oriented FAST and Rotated BRIEF)

https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf

«Вершина» необучаемых аппроксимаций SIFT

Идея FAST Идея BRIEF

• Выбираем 16 пикселов на дискретной окружности 

(алгоритм Брезенхейма) вокруг точки p

• Углом будет считаться точка, если 12 

последовательных пикселов либо светлее p 

больше, чем на порог t, либо темнее

• Выбираем N случайных пар пикселов (ai, bi) в 

окрестности

• Каждой паре сопоставляем 1 (если яркость I(ai)> 

I(bi)) и 0, если наоборот

• Получаем бинарный код desc(p), и можем 

сравнить по расстоянию Хэмминга с другими

https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf


ORBSLAM - Tracking

R.Mur-Artal, J.M.M.Montiel, J.D. Tardos. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on robotics, 2015 

• На новом кадре находятся ORB точки

• Они сопоставляются с предыдущим кадром, 

и оценивается поза камеры. 

• Если с предыдущим кадром не удается 

сопоставится, тогда релокализация

• Поскольку ORB ненадёжный, то точек 

сопоставляется мало, поэтому отдельный 

этап Track Local Map

• С предыдущих ключевых кадров видимые 3Д 

точки сцены проецируются на текущий кадр, 

фильтруются по эвристикам, и затем 

матчатся с несматченными ORB точками

• По итогу поза уточняет, и принимается 

решение, добавлять или нет новый ключевой 

кадр в карту 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7219438


ORBSLAM - Mapping

• Полная карта сцены – Co-visibility Graph

• узлы это ключевые кадры

• ребра связывают кадры, которые видят >= 15 

одних и тех же точек

• Essential Graph – упрощённая карта сцены с 

прореженными связями, минимальное 

оставное дерево

• EG используется, когда нужно уточнить всю 

карту при закрытии циклов

• Ключевые кадры выбираются часто, 

предусмотрен механизм отбраковки лишних 

ключевых кадров

• Поиск похожих изображений по тем же 

ключевым точкам используется для детекции 

циклов и ре-локализации

• https://github.com/dorian3d/DBoW2 

https://github.com/dorian3d/DBoW2


ORBSLAM - Loop Closure

После закрытия цикла До закрытия цикла

Закрытие цикла приводит к «скачкам» камеры и пересчёту карты



ORBSLAM - Ограничения закрытия циклов

Движение было в одном и 
другом направлении, поэтому 
картинки не были похожими, 
цикл не был обнаружен, и 
закрытие цикла не произошло



Скорости работы



Скорости работы



ORBSLAM2

Развитие ORBSLAM с добавлением уточнения всей карты (глобального BA) и работой со 

стерео-данными и RGB-D

ORBSLAM

Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE 

Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

ORBSLAM2

https://github.com/raulmur/ORB_SLAM2


ORBSLAM2

• На стереопаре мы сопоставляем точки между 

ракурсами, триангулируем, и сразу получаем 3Д 

координаты

• Выделяем «близкие» и «дальние» точки. 

• Для близких достаточный параллакс позволяет 

точно оценить глубину и использовать для 

оценки позы камеры

• Дальние точки оцениваем только примерно, 

можем использовать для оценки поворотов

Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE 

Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.



Влияние стерео



ORBSLAM3

https://github.com/UZ-SLAMLab/ORB_SLAM3

https://github.com/UZ-SLAMLab/ORB_SLAM3


ORBSLAM3

• Акселерометры (IMU) есть во многих 

устройствах (телефонах, камерах)

• IMU позволяет улучшить трекинг камеры при 

motion blur, малом числе ORB, и в целом 

повысить точность

• Atlas – карта, состоящая из многих 

отдельных карт. Одна из них «активна», 

используется для текущего трекинга.

• Если обнаруживаем «связь» между картами 

в атласе, тогда мы их объединяем 



ORBSLAM3



Нейросетевой SLAM



Deep Visual Odometry

• Нейросетевые методы начали 

проникать в задачу SLAM

постепенно, рассматривая 

отдельные подзадачи

• Пример - Visual Odometry

• Задача – оценить движение камеры 

между парой кадров

• Вспомогательные задачи, такие как 

оценка оптического потока, оценка 

карты глубины и т.д. используются 

как вспомогательные, чтобы 

нейросеть получала достаточно 

информации для обучения

Ummenhofer et. al. DeMoN: Depth and Motion Network for Learning Monocular Stereo. ICCV2017



DeMoN: Depth & Motion Network

Ummenhofer et. al. DeMoN: Depth and Motion Network for Learning Monocular Stereo. ICCV2017

Идея: чередуем оценку оптического потока и карты глубины для того, чтобы заставить сеть 

учитывать оба кадра



Deep mapping

Генерация семантической карты напрямую из 2D изображений

Source: arXiv:1804.02176v2



Deep Tracking and Mapping (DeepTAM)

Оценка позы на основе ключевых кадров и построение карты. Без loop closure 

и relocalization

Схема
Оцениваем позу камеры 

относительно предсказанного 
виртуального кадра

H. Zhou et al., DeepTAM: Deep Tracking and Mapping. ECCV 2018



Модуль трекинга

• Оцениваем позу и оптический поток

• Генерируем набор гипотез и затем усредняем их

H. Zhou et al., DeepTAM: Deep Tracking and Mapping. ECCV 2018



Модуль картографирования

• Mapping = high-quality depth estimation for keyframe

H. Zhou et al., DeepTAM: Deep Tracking and Mapping. ECCV 2018



Пример работы

H. Zhou et al., DeepTAM: Deep Tracking and Mapping. ECCV 2018



Recurrent All-Pairs Field Transforms (RAFT)

Zachary Teed, Jia Deng RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. ECCV 2020

Метод оценки оптического потока на основе рекуррентного модуля

https://arxiv.org/abs/2003.12039


Recurrent All-Pairs Field Transforms (RAFT)

Zachary Teed, Jia Deng RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. ECCV 2020

Метод оценки оптического потока на основе рекуррентного модуля

https://arxiv.org/abs/2003.12039


DROID-SLAM

https://github.com/princeton-vl/DROID-SLAM 

• Полная схема SLAM, вдохновлённая идеями RAFT

• Будем строить граф сцены из набора ключевых кадров, для каждого 

оценивая позу и карту глубины.

• Нейросетевой модуль применяется к рёбрам графа, уточняя позу и 

карту глубины кадра

https://github.com/princeton-vl/DROID-SLAM


DROID-SLAM

https://github.com/princeton-vl/DROID-SLAM 

• Система состоит из двух потоков – Frontend и Backend

• Frontend работает с потоком кадров. 

• Для нового кадра считают признаки, связывают с 3мя ближайшими ключевыми 

кадрами по оптическому потоку

• Поза инициализируется линейной моделью

• Оператор уточнения применяется несколько раз для уточнения позы и глубины 

нового ключевого кадра

• Backend – глобальный BA на всём графе сцены

• Перестраиваем граф сцены, посчитав оптический поток между всеми парами 

кадров, инициализировав матрицу расстояний N*N

• Проходим по всем рёбрам, начиная от близких по времени, и затем выбирая 

новые кадры в порядке увеличения оптического потока, подавляя близкие рёбра

• Применяем оператор уточнения для всех ребёр получившегося графа

https://github.com/princeton-vl/DROID-SLAM


Резюме SLAM

• Задача SLAM близка к задаче SFM, но работает в 

итеративном он-лайн режиме, в реальном времени

• На практике пока в основном используются 

мультимодальные методы, работающие по классическому 

подходу с ключевыми точками

• Нейросетевые методы активно развиваются, превосходят 

по точности классические методы для случая RGB/RGBD

камер, но пока очень вычислительно затратны
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