
Дмитрий Сенюшкин, Николай Патакин — Samsung AI Center Moscow

Дифференцируемая
графика
Part 1: Forward and Inverse Rendering

Введение

Forward Rendering

Forward Rendering

I = ℛ(θ)

Геометрия, Материалы, …θ = Цвет пикселяI =

Forward rendering
Представления сцены

Triangular mesh Implicit
representation

(e.g. SDF)

Volumetric

representation

(e.g. NeRF)

Явные — треугольные меши с текстурами;
Неявные — неявное функциональные представления (SDF, NeRF)

В зависимости от представлений удобно применять разные методы рендеринга

Классификация подходов
Растеризация vs Ray Tracing

Real-time
rendering Radiative transport

simulation

Два основных подхода:

Предмет нашей лекции

Forward and Inverse Rendering
Forward Rendering

Inverse Rendering

I = ℛ(θ)

θ = ℛ−1(I)

Геометрия, Материалы, …θ = Цвет пикселяI =

Inverse rendering
Формальная постановка задачи

• Inverse rendering — это процесс реконструкции сцены из входных
изображений этой сцены.

• Формально мы рассматриваем его как процесс оптимизации
параметров сцены относительно функции ошибки расчитанной
на обучающей выборке

θ ℒ
D

min
θ

ℒ(̂I, I |D)
• Для осуществления такой минимизации градиентными методами
необходимо уметь рассчитывать производные по параметра, т.е.
необходимо уметь дифференцировать пайплайны прямого
рендеринга

Дифференцируемая
Растеризация

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

NVDIFFRAST

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

– Определены NVDIFFRAST
– Определяются пользователем

Вершинные преобразования

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

Однородные координаты
Связь евклидова и проективного пространств

Евклидово, ℝ2 Проективное, ℍ2

p(x, y) ∈ ℝ2 ↔ p(wx, wy, w) ∈ ℍ2

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Model frame -

координатная система объекта

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Model frame -

координатная система объекта

World frame -

координатная система сцены

Model matrix

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

World frame -

координатная система сцены

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

World frame -

координатная система сцены

Camera frame -

определяется камерой

View matrix

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Camera frame -

определяется камерой

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Camera frame -

определяется камерой

Projection matrix

Clip space -

определяется камерой

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Clip space -

определяется камерой

Ограничивается объем между

ближней и дальней плоскостями:

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Clip space -

определяется камерой

Ограничивается объем между

ближней и дальней плоскостями:

- ближняя плоскость,

проекционный экран

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Clip space -

определяется камерой

Ограничивается объем между

ближней и дальней плоскостями:

- ближняя плоскость,

проекционный экран

- дальняя плоскость

Иерархия преобразований

Normalized

Device

Coordinates

Clip space

Camera frame

World frame

Model frame

Perspective
division

Перспективная проекция
Pinhole camera

 — точка в координатной
системе камеры

 — проекция точки на
плоскость изображения

 — фокусное расстояние
камеры

p

p̂

f

Pinhole camera - простейшая модель камера без линз с бесконечно малой апертурой
(размер отверстия, через которое попадает свет)

Перспективная проекция
Pinhole camera Из подобия треугольников:

В однородных координатах:

p(px, py, pz) ⟼ p̂(f
px

pz
, f

py

pz
, f)

p̂(f
px

pz
, f

py

pz
, f)

∈ℝ3

⟼ p̂(fpx, fpy, fpz, pz)
∈ℍ3

ℙ

p̂ =

fpx
fpy

fpz
pz

=

f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0

×

px
py
pz
1

Матрица проекции ℙ : ℍ3 ↦ ℍ3

Перспективная проекция
OpenGL. Camera Frustum

• Ось Z инвертирована.

• Присутствуют clip-плоскости. Все что не
попадает в усеченную пирамиду камеры
игнорируется

• Нормировка глубины:

• Нормировка положения:
(деление на W, H)

pz = − znear ⟼ pz = − 1
pz = − zfar ⟼ pz = 1

px, py ∈ [−1,1]

Перспективная проекция
OpenGL. Camera Frustum

В матрицу проекции добавились
параметры и :
α β

p̂ =

px
f

W

py
f
H

αpz+β
−pz

=

f
W 0 0 0

0 f
H 0 0

0 0 α β
0 0 −1 0

×

px
py
pz
1

СЛАУ граничных условий

−αznear + β = − znear
−αzfar + β = zfar

α =
zfar + znear

znear − zfar

β =
2zfarznear

znear − zfar

Перспективная проекция
OpenGL. Camera Frustum

• Изображение однозначно задается
соотношениями фокального
расстояния и размера изображения

• определяются fov-углом ()

• Изображения с одинаковым fov
идентичны с точностью до масштаба.
Конвенциально выбрали единичный
масштаб

f
W

, f
H

θ

Перспективная проекция
OpenGL. Camera Frustum

Из треугольника находим:

, ,

Mатрица проекции

tan(θy

2) = H
f

tan(θx

2) = W
f

a = H
W

ℙ : ℍ3 ↦ ℍ3

ℙ =

1

a tan(θy
2)

0 0 0

0 1

tan(θy
2)

0 0

0 0
zfar + znear

znear − zfar

2zfarznear

znear − zfar

0 0 −1 0

Вершинные преобразования
Основное

• Все операции происходят в однородных координатах

• Вершины преобразуются из model-space в clip-space для последующей
растеризации

• Для перехода в clip-space используется MVP матрица.

• Перспективная матрица определяется clip плоскостями, одна из
которых это проекционный экран

• Операции вершинных преобразований непрерывны и
дифференцируемы.

Растеризация

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

Растеризация
Основная идея

• Растеризация принимает на вход треугольный
меш и соотносит каждому пикселю на экране
не более одного треугольника.

• Тест покрытия пикселя треугольником
строится на основе трех уравнений ребер

• Тест глубины сортирует треугольники по
буферу глубины

• Для каждого пикселя рассчитываются
барицентрический координаты на
треугольнике (+ производные по ним по screen-
space координатам, опционально)

Растеризация
Тест покрытия. Edge function. Уравнение ребра — это прямая

Она проходит через две

вершины

e(x, y) = ax + by + c

p0, p1

e(x, y) = det
x y 1
x0 y0 1
x1 y1 1

Растеризация
Тест покрытия. Edge function.

Она меняет знак при переходе
через границу

В векторной форме:

e(p) = n⊤(p − p0)
n = (y0 − y1, x1 − x0)⊤

∥n∥ = ∥p0 − p1∥

Функция знаковая!
e(p)
e(p) = ∥p0 − p1∥∥p − p0∥ cos ϕ

Ориентация нормали зависит от
порядка вершин

Растеризация
Тест покрытия. Edge function.

Модуль равен удвоенной
площади этого треугольника:

e(p)

|e(p) | = 2 × 1
2 bh = 2AΔp0p1q

Рассмотрим треугольник Δp0p1q

e(p) = ∥p0 − p1∥∥
b

p − p0∥ cos ϕ

h

Растеризация
Тест покрытия

Растеризация
Тест глубины

• Растеризуется только ближайший по
глубине треугольник

Растеризация
Барицентрические координаты

Барицентрики :

1.

2.

u, v, w
u, v, w > 0
u + v + w = 1

u(x, y) = a0
AΔ

= e0(x, y)
2AΔ

v(x, y) = a1
AΔ

= e1(x, y)
2AΔ

w = 1 − u − v Площадь треугольника не зависит от AΔ p

Растеризация
Основное

• Мы ввели понятие edge function

• Растеризация для каждого пикселя рассчитывает индекс ближайшего
треугольника, покрывающего его, и барицентрический координаты
этого пикселя в треугольнике

• Барицентрики непрерывно и дифференцируемое зависят от вершин
меша

Интерполяция

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

Интерполяция
Наивный подход. 2D screen-space

 — точки на экране

 — некоторые атрибуты точек

Интерполяция:

p0, p1, p2

A0, A1, A2

A = uA0 + vA1 + (1 − u − v)A2

Попробуем использовать….

Интерполяция
Перспективные искажения

• Объекты одного размера на
разном удалении проецируются
неодинаково (красная стрелка)

• Перспективные искажения
проявляются так же при
проецирование одного объекта
расположенного под углом к
плоскости экрана (зеленый
отрезок)

Интерполяция
Перспективная коррекция

Рассмотрим случай
плоской (XZ) перспективной

линейной интерполяции вдоль
прямой проходящей через

p1, p2

{px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

Коэф-т интерполяции :q

Интерполяция
Перспективная коррекция

sx = s1
x + t(s2

x − s1
x)

px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

Точки проецируются на
плоскость в точки

p1, p2, p
s1, s2, s

Нам известен коэф-т линейной
интерполяции в плоскость
экрана (это барицентрики)

t

Интерполяция
Перспективная коррекция
Подобие треугольников:

p1
x

p1z
= s1

x

f

Интерполяция:

sx = s1
x + t(s2

x − s1
x)

px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

Интерполяция
Перспективная коррекция
Подобие треугольников:

p1
x

p1z
= s1

x

f
, px

pz
= sx

f

Интерполяция:

sx = s1
x + t(s2

x − s1
x)

px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

Интерполяция
Перспективная коррекция
Подобие треугольников:

p1
x

p1z
= s1

x

f
, px

pz
= sx

f
, p2

x

p2z
= s2

x

f

Интерполяция:

sx = s1
x + t(s2

x − s1
x)

px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

Интерполяция
Перспективная коррекция
Подобие треугольников:

p1
x

p1z
= s1

x

f
, p2

x

p2z
= s2

x

f
, px

pz
= sx

f
Интерполяция:

sx = s1
x + t(s2

x − s1
x)

px = p1
x + q(p2

x − p1
x)

pz = p1
z + q(p2

z − p1
z)

q =
tp1

z

tp1z + (1 − t)p2z

• Коэффициент интерполяции в пространстве нелинейно

зависит от коэффициента в плоскости!

• Точки находятся в clip-space, т.e. — это координатаp pz w

Интерполяция
Расчет атрибутов

• Для корректной интерполяции атрибут необходимо

использовать пространственный коэффициент сглаживания

Интерполяция в clip-space:

A(p) = A1 + q(A2 − A1)

q = tw1
tw1 + (1 − t)w2

A(p) =
A1
w1

+ t (A2
w2

− A1
w1)

1
w1

+ t (1
w2

− 1
w1)

A(p) = lerp(A/w, t)
lerp(1/w, t)

Попробуем использовать…. Успех!

Интерполяция
Коррекция барицентриков. Интуиция

Для перспективной интерполяции можно скорректировать плоские
барицентрики и использовать для линейной интерполяции.

A(p) = A1

(1 − t)
w1

(1 − t)
w1

+ t
w2

+A2

t
w2

(1 − t)
w1

+ t
w2

ПослеДо

A(p) = A1
(1 − t)

1 − t + t
+A2

t
1 − t + t

̂u(x, y) =
u
w0

u
w0

+ v
w1

+ (1 − u − v)
w2

̂v(x, y) =
v

w1

u
w0

+ v
w1

+ (1 − u − v)
w2

По аналогии

Интерполяция
Коррекция барицентриков (строго)

• Барицентрические координаты — это атрибуты!

• Для каждой вершины, только один из

барицентриков не нулевой.

• Используем формулу корректной интерполяции

атрибутов

u(x, y) =
u 1

w0
+ v 0

w1
+ (1 − u − v) 0

w2

u 1
w0

+ v 1
w1

+ (1 − u − v) 1
w2

u(x, y) =
e0(x, y)

w0
e0(x, y)

w0
+ e1(x, y)

w1
+ e2(x, y)

w2

• И числитель и знаменатель зависит от положения

• Барицентрики после коррекции линейно

интерполируют атрибуты

p

p(u, v,1 − u − v)

Интерполяция
Основное

• Мы получили универсальную формулу для перспективно корректной
интерполяции атрибутов

• С ее помощью научились корректировать плоские барицентрики для
корректной линейной интерполяции без необходимости применения
универсальной формулы

Текстурирование

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

Текстурирование
2D текстуры

• Текстура — это плоское
изображение, каждый
пиксель которого задает
значение атрибута (цвета)
какой-то точке на меше

• На этапе текстурирования
из этого буфера
семплируется значение по
двум числам — текстурным
координатам

Текстурирование
2D текстуры. Текстурные координаты

• Текстурные координаты определены для
каждой вершины меша

• Текстурные координаты описываются двумя
нормализованными координатами (UV- или ST-):

• Построение текстурных координат — UV / ST
развертка (за рамками лекции)

• Для семплирования для каждого пикселя сначала
интерполируются текстурные координаты, затем по
ним интерполируется текстура

Текстурирование
2D текстуры. Сэмплирование

Откуда появляются
артефакты?

Текстурирование
Аналитическое значение

Rendered image

Texture

Текстурирование
Nearest оценка

Rendered image

Texture

=> ALIASING

Текстурирование
MIP-mapping. Интуиция

ИДЕЯ: Предынтегрировать текстуры по областям в зависимости от размера
пикселя на текстуре и учесть это при семплирования

Интуиция: Чем дальше пиксель, тем
большую площадь он занимает на

текстуре

Текстурирование
MIP-mapping. Построение MIP уровней

• MIP уровни строятся усреднением пикселей по областям кратным двойке.
• Логарифм размера области (степень двойки) усреднения определяет MIP
уровень.

Mip 6

2x2

Mip 5

4x4

Mip 4

8x8

Mip 3

8x8

Mip 2

16x16

Mip 1

32x32

Mip 0

64x64

Average Pooling 2x2:

Текстурирование
Выбор MIP уровня. Интуиция

Так как лучи из камеры
расходящиеся, то при

смещении пикселя значение
текстурных координат
меняется меньше, если
треугольник близко

расположен, и сильно — если
далеко.

ИДЕЯ: Использовать производные текстурных координат
по координатам экрана для расчета MIP уровня

Текстурирование
Выбор MIP уровня

Необходимы screen-space производные текстурных координат:

Вспомним, что — это интерполированные текстурные координаты:s, t

s = u(x, y)s1 + v(x, y)s2 + (1 − u(x, y) − v(x, y))s3

Для расчета их производных необходимы производные барицентриков по
screen-space координатам (x, y). Вычисляются дифференцированием

перспективно корректных барицентриков аналитически.

Текстурирование
Выбор MIP уровня

– Sample footprint

– Principal axes

Необходимы screen-space
производные текстурных координат:

Определение нужного MIP уровня - задача
расчета наибольшего сингулярного
значения (длины наибольшей оси -
собственного вектора):

Текстурирование
Выбор MIP уровня

– Sample footprint

– Principal axes

Наибольшее сингулярное значение
ищется из уравнения:

Решение:

Текстурирование
Три-линейная интерполяция

– Значения пикселей

– Результат
– Линейная интерполяция

Текстурирование
Три-линейная интерполяция

До После

Текстурирование
Основное

• При текстурировании необходимо учитывать размер области, занимаемой пикселем на
текстуре. Чем дальше расположен растеризованный треугольник, тем больше эта
область

• Симулировать этот эффект можно предынтегрированием текстуры по областям
кратным двойке — построение MIP уровней. Выбор уровня — это логарифм
характерного размера области покрытия пикселем.

• Для выбора MIP уровня можно использовать screen-space производные текстурных
координат

• Для достижения непрерывности и дифференцируемости используются screen-space
производные текстурных координат. Решается задача на поиск наибольшего
сингулярного число матрицы якобиана screen-space производных текстурных
координат.

Мы можем уже неплохо рендерить,
но что там с оптимизацией?

Оптимизация
Проблема visibility gradients

Initialization Target Loss function Gradients

Рассмотрим простую задачу оптимизации треугольника под шаблон:

Функция потерь ненулевая, однако оптимизация не происходит, т.к.
градиенты равны нулю

Anti-aliasing

Rasterization

Ve
rte

x
pr

oc
es

si
ng

Mesh

R
as

te
riz

at
io

n

Общий пайплайн

Triangle indices

Depth buffer

Barycentrics

A
nt

ia
lia

si
ng

A
ttr

ib
ut

es

In
te

rp
ol

at
io

n

Texture
coordinates

Surface normals

Te
xt

ur
in

g

Albedo

S
ha

di
ng

Anti-aliasing
Зачем он вообще нужен?

Возникают эффекты
алиасинга на границах.
Необходим способ

смешения цветов в этих
областях.

Для оптимизации
геометрии необходимо

решить проблему
градиенты видимости

(visibility gradients)

Оптимизация: Графика:

Anti-aliasing
Оптимизация. Visibility gradients

Мы не умеем дифференцировать
в точках разрыва функции.

Необходим корректный метод
дифференцирования, который
распространит градиенты
через точки разрыва.

Для обратного рендеринга эта
проблема первостепенна!

Anti-aliasing
Графика. Алиасинг на границах

Силуэтные ребра треугольника
создают резкие зазубренные края
на изображении.

Необходим метод сглаживающий
границы

Anti-aliasing
Решение. Основная идея

Для решения проблемы видимых градиентов необходимо уметь
дифференцировать в граничных точках.

Эти границы субпиксельные!

Необходимо ввести параметризованную модель границы
в процедуру рендеринга, по параметрам которой уже

можно считать градиенты

Anti-aliasing
Решение. Основная идея

Идея: ввести зависимость цвета пикселей при переходе через
параметризованную границу непрерывную по параметрам этой границы —>

интерполяция вдоль параметризованная на грань PQAB

Anti-aliasing
Этап 1. Точки разрыва — как найти?

Точки разрыва возникают, если в соседние пиксели растеризуются разные
треугольники не имеющие общих ребер

Растеризовать треугольник = треугольник покрывает центр пикселя

 — центры соседних пикселей
 — индексы растеризованных

треугольников

Далее рассматривается только
ближайший по глубине из этих двух

p1, p2
i1, i2

Anti-aliasing
Этап 1. Поиск границы — силуэтное ребро

sign(eA,B(C)) ≠ sign(eA,B(D))sign(eA,B(C)) = sign(eA,B(D))∄D

Силуэтное ребро. - edge functioneA,B(p) Обычное ребро

Для выбранного треугольника выбираются силуэтные ребра

Anti-aliasing
Этап 2. Параметризация границы

Граница — это прямая:
⟨ (x0, y0), n ⟩ = d

Нормаль:
n = (y0 − y1 , x1 − x0)

Anti-aliasing
Этап 3. Коэффициента смешивания цветов

Цвета пикселей
смешиваются

линейно с коэф-том:
α = 0.5 − c

Такая параметризация не
меняет цвета, если точка
пересечения — центр
отрезка и позволяет

добавлять или уменьшать
цвета при переходе через

эту точку

Anti-aliasing
Этап 3. Расчет коэффициента смешивания

Точка лежит на
границе:
(c,0)

⟨ (c,0), n ⟩ = d

Граница — это прямая:
⟨ (x0, y0), n ⟩ = d

 c = x0 − y0
x1 − x0
y1 − y0

α = 0.5 − c

Anti-aliasing
Этап 4. Смешение цвета

Anti-aliasing

Anti-aliasing
Основное

• Смешивает цвета пикселей в граничных точках

• Решает проблему разрывности функции на границах

• Параметризует границу силуэтными ребрами

• Коэффициент смешение цвета непрерывно и дифференцируемо зависит
от параметров границы (вершин треугольников)

Где применяется?

Magic3D

Генерация аскетов
по тектовому запросу

