Kypc « ThéxmepHoe KoMrnbromepHoe 3peHue»

Tema Ne5
«PeKOHCTpPYKUuA KapTbl MMYyOUHbI»

AHTOH KOHYLUWH
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Kak nony4nTb KapTy rmyounHb!?

BbuHoKynspHoe
cTepeo

MHorosmgoBsoe
cTepeo

Infra-Red Projector Low-res Low-res
(projects dots) RGB Camera  Infra-Red Camera

Single RGB Image Depth Map
[TpenckaszaHue rnyouHsbl CeHcop rnyouHbl



BbUHOKYyNnAapHOe cTepeo



[1NOoTHOE DMHOKYNAPHOE CTEPED

Human-Eye Brain
Separation(~6.5cm)

Computer

ety roonly

‘,;

Left 2D Image Right 2D Image 3D View

« 3apgaya nNNoTHOro OUHOKYNSAPHOro CTepeon: BoccTtaHOBUTL B 3D BCce BUOAUMbIE
Ha 2-X N300paXXeHUsAX TOYKU
« KannbpoBky kamep Oyaem cuyntaTb N3BECTHOM

Cnaiig: M. Bleyer



« [lapannakc - Buanmoe cmelleHne obbekta B 3aBUCUMOCTM OT TOYKU
ob30pa

« YeM 00BbekT bnmxke, TeM cmeLleHune bonbLue



CTtepeoncuc

«Ctepeoncuc (aHrn. stereopsis) - CEHCOPHbIN TMPOLECC, BO3HUKAKOLWIMA TPU
OMHOKYNAPHOM  3pEHUMM  Kak  ncuxodmandeckass peakuuss Ha  CETYaTOuYHYH
ropusoHTanbHyt0 gucnapatHocTb. B pesynetate C. CcyObekT nepexunBaer
cneundunyeckoe oLyuweHne rmyounHbl. <...> ».

(Mcuxonornyeckas aHUMKNoneans)

JleBoe n3obpaxkeHue [MpaBoe nsobpaxeHue



Obwasa cxema

PekTndomnkaumns n3aodbpakeHmn

.

Bbluncrnenme COOTBETCTBYHOLLUNX TOYHEK

\/

BocctaHoBneHnune 3D nyTem TpuaHrynaumm



Pektndpunkaumna

* «Pektndmkaumnsa» — npeodbpasoBaHue cTepeonapbl B N300paxeHusl, B
KOTOPbIX COOTBETCTBYHOLLNE INUMNONSPHbIE NUHMUKM NEeXaT Ha OOQHOU U
TOW XK€ ropnsoHTanbHON CTPOKe

* [lepBbi cnocob: NnpoeumpoBaHMe Ha OOLLYIO NITOCKOCTb C MOMOLLbIO
romorpapuu



HepnocTtaTtku:
* He npumeHnm, Korga kKamepa OBUXETCS Brnepen nnv Hasan
* CnbHble UCKaXXEHUA B HEKOTOPLIX Cny4asax



PaguanbHaqa pasBepTka

* Polar rectification

* I/IH,u,eKcmpyeM aAnnnondpHbie NNHN YoM
NnoBOPOTA OTHOCUTETIBHO 3MNMUMOJIN

« Konupyem COOTBETCTBYIOLLME Naphbl
AMUMONAPHbLIX NIMHUM NocnegoBaTeribHO B
COOTBETCTBYHOLLME TOPU3OHTANN
PEKTUUNLINPOBAHHLIX N300paXkKeHnm

« PaboTtaeTt B Tex cny4asx, korga
owmbaeTcs MeToa NpoeLunpoBaHns Ha
oOLL Y0 NITOCKOCTb




o
O
=
=
o
-

O
=
T
©
i)
O
o
=
=
)
O
Q.
-

[TonapHas

peKkTndunkaumnsa







Obwasa cxema

PekTndomnkaumns n3aodbpakeHmn

~_

Bbluncrnenme COOTBETCTBYROLLUUX TOHEK

.

BocctaHoBneHue 3D nyTem TpuaHrynaumm




TpuaHrynayus
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Xi, Xr - cMeLleHNs OTHOCUTENbHO NPUHLUMMANBbHOM TOYKK

Cnarig: M. Bleyer



TpuaHrynayus
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Cnatig: M. Bleyer



TpuaHrynauus

A
NoaoOHbIe
TPeyronbHUKMU:
X-B x
z i WA
x [pixels]
|/

y >

X |meters]

Cnarin: M. Bleyer
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TpuaHrynauus &
3 nogobua TpeyrosibHNUKOB:
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ckniovaem X v Bbipaxkaem Z.
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NToroBble koopanHaTtbl 3D-TOYKM:
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Xi, Xr - cMeLleHNs OTHOCUTENbHO NMPUHLUMMATIbHOM TOYKU



Obwasa cxema

BbluncneHumne KapTbl ANCMNapuUTeTa

PekTndukaumsa n TpmaHrynaumsa — TeEXHUYEeCKue 3agadvm, OCHOBHOM
NHTEpPEC 3TO CTEPEOCONoCTaBeHne



JlokanbHble MeTOAbI OLIEHKU AUCNapUTETa



CtepeoconocTaBlieHMe Yepes Bbl4MCNEHNE ANcnapuTeTa

InNnnonsipHoe orpaHN4YeHune:
«COOTBETCTBYOLLME TOYKM fexaT Ha O4HOWN CTPOKE»

Kakou oucnapurter y aTou
TOYKMN? Kak HanTu noxoxme?



OCHOBHble TPYOHOCTU

«l'noxo» TekcTypupoBaHHble 0bnacTu

1 — OgHopoaHast obnacTb
2 — TekcTypa HEM3MEHHa B ropu3oHTaNIbHOM HanpaBneHnu
3 — [NoBTOpSAOLWAACA TEKCTypa



OCHOBHbIE TPYOHOCTU

I3MmeHeHne LBeTa TOYKMK MeXay pakKypCaMi

LLlym kamepbl, "3MeHeHNe OCBELLEHHOCTU, MOrPeLIHOCTY
CAMNIIMPOBaHUSA U T.A.



OCHOBHble TPYOHOCTU

[lepekpbITnSA

HekoTopble NMKcenun ogHoro
n3obpaxeHnst MoryT OblTb HE BUOHbI
(NepekpbIThl) HA ApYyroMm.

«HeBugnmble» obnacTn Ha3bIBatOT
obnactamMmmn nepekpbITUS

halt-occluded

half-occluded

- ‘ on ‘
< &0
Y4
.‘/

left camera

Pfo ‘

right camera

Cnarin: M. Bleyer
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OCHOBHble TPYOHOCTU

[lepeKkpbITnS

[Tpmep obnacTten nepekpbiTUs (BblAeneHbl KpacHbIM)

Pucynox: M. Bleyer
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JlokanbHble METOAbl OMHOKYNAPHOIO CTEPEOD € © l‘ﬁ,.-"“-,"

* JlokanbHble, T.K. AUCNAPUTET B KaXX40MN TOYKE 3aBUCUT TOMNbKO OT ee
NnoKanbHOW OKPECTHOCTM

* Wcnonbaytot cTtpaternto WTA (Winner-Take-All), T.e. B KaXxgon To4ke
«nobexnaeT» COOTBETCTBME C HAMMEHbLLUEN KCTOUMOCTbIO»



HaunBHbIM anroputm

e CTOMMOCTb COOTBETCTBUS — PA3HOCTb NHTEHCUBHOCTEN MUKCENEN
« Peaynbrar — CNULWKOM MHOTO LUyMa

Mpumep paboTbl HAMBHOrO anropuTMma

[Tpumep: M. Bleyer



HaunBHbIM anroputm
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YYeT OKpPeCTHOCTU NS

« CtoumocTtb cooTtBeTcTBUA — SAD, SSD, NCC no OokHYy BOKpYr NUKCens

d» =argmin > c(q,q—d)
O<d<dmax geWp
roe:
dy — NCKOMBbIM OUCrapuTeT B NUKCere p,
c(p,q) — PYHKUMA CTOMMOCTHN,
Wp — OKHO BOKpPYT nukcena p,
dnaxy  — MakcMMarnbHO BO3MOXHbIA AncnapuTteTt

 Bo3MmoOXHa o4eHb a(pdeKTUBHASA peanusauuns
« MeToa «CKOMb3SILLEro okHa»



[Tpobnema BbibOpa pa3mepa OKHa

 ManeHbKkne okHa — HegocTaTo4YHO TEKCTYpPbI

* bornblne okHa — apdekT «pasgyBaHUsa» OOBLEKTOB nepeaHero
nnaHa (foreground fattening)

Ground truth OkHO 21x21

[Tpumepsr: M. Bleyer



Oby4yeHmne ¢ nomoulbio CNN
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J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural
Network. CVPR 2015



[Tpumep pesynbTtaTta Ha KITTI 2015

i - Owwubka 14.7% onsa winner-take-all
~ cTparterumu

v

Owwnbka 2.61% npun ncnonb3oBaHUn
METPUKKN BHYTpU semi-global ctpaternu
(noeto paccMoTpum gansLie)

MeTpukn — gucnapuTeT B NMUKcene BEPHbIN, ecrnn owmnbka <3px (Mnm 5%)

https://www.cvlibs.net/datasets/kitti/index.php



https://www.cvlibs.net/datasets/kitti/index.php

OueHka Ha gaTtacete KITTI 2015

Stereo Evaluation e o
e The KITTI Vision

! Displets code 247% 3.27 8% 0.7 px 0.9 px 100.00 % 2655 *8 cores @ 1.0 Gha (Matiab « C/Cs+)

F. Coney asd A. Gelgar: DEplets: Resdlying Starso Amdiguities wsing Object owladpe. Conferaace on Computsr Vision and Pattern Racognition (OVWPR) 2015 o
-OCN 651 % 4 0 X 1.0 px 100.00 % 100 ¢ Nvidia GTX Titan (CUDA, Lus/ Torch)) e n ‘ I I I a I u ] e

i Metenck. Conferance on Computer Vision and Fattern Racagrition (TWPR) 2015

S EZ sttt ekt : A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

- - 09%px 100.003% 5 1 core ® 3.5 Ghe {T/Cee)
K Yamasuchi, 0. McAlirstor and & Urtoon: £Hicient Soint Seementation. Occiucion Labeling. Starso and Flow Estimation. $0CV 2014
- v-SF 3.31 % 0.8 px 0.8 px 100.00 % 300 ¢ Towe 8 2.50Gh (T/C+)

Rath aod K. Schindler: View Consictent 3D Soeme Flow Estimatuon ower Muliticle Frames. Proceedings of faropean Conferemce on Computer Yisian. Lectse Notes i, Computer Science

3607 Velodyne Laserscanner

é OSF '1‘ o0 } 407 % 0.8 px 0.9 px 99 95 5% man 1 core @ 3.0 Ghz (Matlad « C/Ce+)
M. Mercr and 2 Geiger: Object Scene Flow for 2atonomous Yehices. Conforsnce on Competer Vizion and Patiarm Sscognition (CVR) 20135

7 CoR wde 3.30% 410% 0.8 px 09px 100.00% 6s 6 cores @ 3.3 Gha (Mathab « C/Css)
& Chalradarty, Y. Xaong Gocrtior and T, Dxdder: Low lowel Vizion by Consensas B 3 Spatial Herarchy of Regsons. CVIR 201%

s 4415 0.9 px 1.0px 100.00 % is | core @ 3.5 G {T/(Css) F
K Tameguchi D segen Lation frvion Labeling  Stereo and Flow Eatimation, ECCY 2014

S =) 3.8 4.72 % 0.3 px 1.0 px 005 5 min 4 cores @ 2.5 Gz (Matlab + T/Te+) 4

K Yasmaspuchi D, Mciliectsr and R Urtesunr Robost Masocdyr Epipalsr Flow Estimation CVPR 2012

10 5-55 i 0px  100.00 % 1 min | core @ 2.5 Ghz (Matlab + C/Cee)
D.wel ClUuandW. F DTV-Conterancs, 2014 mtamy Conferencs on 2014
1 StereoSLIC }.92 % .11 1.0px 99,899 2.3s 1 core @ 3.0 Gz (C/C++)

K Yamaguchi, D mcalisstar and B Urasun: RoBust Monodt

4 cores & 3.0 Ghr (Matiab » C/Ce+)

a
13 4 cores @ 2.5 Ghg (vatiab - C/C++)
K Yamaguch ¥ 2013
14 4 cores 8 2.5 G (GCs+)
AWy sEhmnon
5 . MBM | 435% S43% . 10px  tipx 100.00%: 02s | lowe®@30Gw(C/Ce)
Asomymon wsbmniion
6 PRSoerefow 436% S22% C 09 Lipe  100.00% & 150 5= 4 core ® 1.0 Ghy (Matish - C/Ce+)
S, 5 R R S i P Suiermipfhinl Confortnns 64 Computar istan (I00V) 20100 https://www.cvlibs.net/datasets/kitti/index.php
: 4 o £l — A am = £ A = - n . 8 - fna wT e 4 Fu— . S Ty TS ~ar =


https://www.cvlibs.net/datasets/kitti/index.php

[ mobanbHble METOAbl OUEHKU ancnaputeTa
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[ nobanbHble MeToabl E>

« [nobGanbHble, T.K. ANCNAPUTET B KaXKOOM TOYKE BblYMCIAETCH Npu
MOMOLLIN HEKOTOPOW rnmobanbHon npoueaypbl ONTUMU3aLINK, T.€.
3aBUCUT HE TOJIbKO OT NTOKarIbHOW OKPECTHOCTU

« B po-HenpoceTeBbix MeTogax dopMynMpYOTCA B TEPMUHAX Pa3METKM
rpada n MMHUMU3AL N SHEPTUN

B HeunpoceTeBbiXx MeETOAAX — OQHOBPEMEHHOE npeackasaHne BCeN
KapTbl rMyOUHbI



[ nobanbHble MeToabl

Heobxoanmo HanTu pasmeTky D,
MUHUMU3UPYIOLLYIO PYHKUMIO 3Heprun E(D).

MeTKn — 3Ha4YeHuns ancrapumnTteTta.

[pad — peLleTKka, y3rnbl — MUKCENN.

E ( D) :/Edata( D) T Esm ooth( D)
COOTBETCTBME LIBETOB [NagKkoCTb

Pucynok: M. Bleyer



[Tpobnema coxpaHeHua rpaHuL o)

[MpeanonoXxmm, HeobxoaMMo BOCCTaHOBUTL AMCNapUTET B obnacTu
rpaHuLbl MexXay oObeKkTaMu, Kak NokasaHo Ha PUCYHKe

>
1
I
I
I
I

Hucnapurer

X-KOOpauHaThI

Pucynok: M. Bleyer
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[Ipobnema coxpaHeHus rpaHul &
Cnyyain NUHENHOM Moaenu: s(dp,dq) = ‘dp _ dq‘ P

Bknaa B aHepruio:. Bknaa B aHepruio:.

opP opP
HA HA
= = op

—_— o o o

X-KOOpANHATHI > X-KOOpAUHATHI >
(HeBepHOE peLLeHnE) (BepHOE peLleHmne)

JTnHennaa mogenb He NoOoLpPAET Pe3KMX pa3pbiBOB AMCNapUTeTa.
OHa 4yepecuyp CrnaXnBaeT peLUEHME. Pucynok: M. Bleyer



[Ipobriema coxpaHeHua rpaHuL,

Cny4an nMHeUHON MoOenu: S(dp, dq) = ‘dp _ dq‘ - P

[Mpumep pesynsTtaToB Ansa nmHenHon mogenun. CripaBa nokasaH
YBENUYEHHLIN pparMeHT

[Tpumepsr: M. Bleyer



[Tpobrnema coxpaHeHus rpaHunL
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Cny4van mogenu lNoTTca:

Bknap B aHepruio:

oOp
A
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X-KOOpAUHATHI

(HeBepHOE peLleHne)

>

Hucnapuret

"0,d» - dq
P,d; - dq

Bknapg B aHepruio:
F)

S(dp, dq) =<

X-KOOpAUHATHI

(BepHOE peLleHune)

Mopgenb NoTTca He NpenAaTCTBYEeT pe3kMM pa3pbiBaM gmMcnapuTera.
Takue Mmoaenu HasblBaloT coxpaHaLwmMmMmn paspbiebl (discontinuity preserving) — Kak

N B ONTUYECKOM IMNMOTOKE

Pucynku: M. Bleyer



[Ipobriema coxpaHeHua rpaHuL,

(0,dp - d
Cnyuai mogenu MotTca: s(dp, dq) =+ T

P,d, - d.

[Tpnmep pesynsraTtoB ana mogenu Notrca. Cnpasa nokasaH
YBENUYEHHbLIN PpparMeHT

[Tpumepsr: M. Bleyer
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MuHMMM3auna aHeprnm >

[TnoTHOE cTepeo — 3agavya MHOIMOKNaccoBOW pa3MeTKN

O dekTnBHOE peLleHne Ha rpade obulero Buaa cyLecTByeT NnLlb
ANsi BbINYKIbIX OTHOCUTENBHO |d; - d | napHbIX noTeHumanos [Ishikava,
2003]

Ho Heobxoaumo ncnosnb3oBaTb MOAESN, COXPaHSALWNE rpaHunLbl, a
OHW HEBbIMYKIbl OTHOCUTENbLHO [d, - d|

3agada ctaHoButca NP-nonHou

Heobxoanmbl NpnbNmXeHHbIe anropuTMbl
* Fusion move, Loopy belief propagation, TRW

AnbTEpPHATUBHbLIN BapuaHT — yxo oT rpadpoB obuiero Buaa K
OoepeBbam

H. Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors. PAMI, 2003.



[lepexon K AepeBbaMm

« OTCyTCTBME LIMKINOB NO3BOMSAET UCMNOMb30BaTb METOL
OVNHaMUYECKOro NporpamMmMnpoBaHus

* [nobarnbHbIN MUHUMYM, MPON3BOSIbHAsA HEPTUS,
BbICOKasi CKOPOCTb paboThl

« [NnaBHbIN BONPOC — Kakne pebpa ybupartsb?

Pucynku: M. Bleyer



Anroputm Scanline Optimization

e e

e e ™ o — —

« YpanawTca Bce BepTukanbHble pebpa
« Tak noctynanu B nepBbiX NOAOOHbIX anropuTMax

Pucynku: M. Bleyer



Anroputm Scanline Optimization

OueBunaHaga npobrnema — paccornacoBaHHOCTbL CTPOK MexXay cobou
(horizontal streaking)

[Tpumep: M. Bleyer



AnNroputm Ha ocHoBe MST

Npnes — He popcupoBaTh rMagkocTb Mexay NMKCenamm
CUNbHO pa3Horo uBeTa

Kaxxgomy pebpy (nape nukcenen P v () npuceamBaeTcH
BEC:

w(p,q)=1(p)—1(q)]

CTpoutca MMHUMarnbHOE NoKpbliBaKLLee nepeBo
(Minimum Spanning Tree, MST)

Pucynok: M. Bleyer

O. Veksler. Stereo Correspondence by Dynamic Programming on a Tree. CVPR, 2005.



ANroputmMm Ha ocHoee MST

Jlyywe, 4yem scanline optimization, HO HEKOTOpas paccornacoBaHHOCTb
OCTaeTcH



Anroputm Semi-Global Matching

B KaXkgom nmukcene CTpouTCA CBOE OepPEBO

OnTnmMmnsaums Npon3BoaNTCA BAOMb Ny4Yen,
ncxoasaLmx ns nukcens

[logoxoa He coBceM rnobanbHbIW, HO U HEe
rioKanbHbIN

Pucynok: M. Bleyer

H. Hirschmueller. Accurate and Efficient Stereo Processing by Semi-Global Matching
and Mutual Information. CVPR, 2005.



Anroputm Semi-Global Matching

PaccornacoBaHHOCTM HET, HO ECTb «N30JTINPOBaAHHbIE» TNMUKCEJTN



Anroputm Simple Tree
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Pucynku: M. Bleyer

B kaxkgom nukcerne cTposTcs ABa AepeBa, COBMECTHO NMOKPbIBAOLLINX
BCe n3obpaxeHne. ANroputm rnodanbHbI U NULLIEH HeagocTaTka SGM.

M. Bleyer, M. Gelautz. Simple but Effective Tree Structures for Dynamic Programming-
based Stereo Matching. VISAPP, 2008.



Anroputm Simple Tree

[Tpnmep paboThl



Icnonb3oBaHWe cermeHTaumnmu

* Wcnonb3yeTtca npennosioxxeHne o cerMeHtaumm («obractu paspbiBa gucnaputeta
coBMnagarT C KpasgMn Ha U3obpaxeHum)

« [na ero peanusauuu NpUMEHAIOT NepecermMeHTauuio (T.e. CerMeHTbl OOCTaTO4HO
Merikue, «C 3anacom»)

4 =hT ]
s TR
x _E
ﬂ o \““J:
| =i nicad i
NcxogHoe Peaynerat [paHnUbl 06bEKTOB
n3obpaxeHue cerMeHTauum

* [lponcxoanT nepexod M3 MUKCENbLHOrO MNPOCTpPaHCTBA B MPOCTPAHCTBO CErMeHTOB.
[ MagKoCTb BHYTPU CErMeHTOB opcupyeTcs
e 3TOT nogxod cenyac nokasbiBaeT Hauny4wune pesynerarthbl
 Bo3smoxHo, nepeodbydyeHne Ha Middleburr
peoby y [Tpumepnr: M. Bleyer
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Ba30BbIii anropuTMm ¢ cermeHTaLmen O

» [lepecermeHTauus
* WMHunymanusauyus pelueHusd
« Jltobon nokanbHbIM anropmuTM Ha NMUKCENSX
« Annpokcumaunst CEerMeHTOB rmagknmm noBePXHOCTSAMU
« Mopgenb: nnockocTb, B-cnnavH
 CpepnctBo: RANSAC, ronocoBaHue u T.4.
* YTOYHEHWE PA3METKN CETMEHTOB
 Iterated Conditional Modes (ICM), Cooperative Optimization n gp.



>3
icnonb3oBaHWe cermeHTaumnn O

* [lpenmyuiecTBa
« HapexHocTb B 0bnacTtax co cnabown TekcTypoun

 CHwXeHMe pasMepHOCTM 3adadnm (onTuMmM3auud Ha YpPOBHE
CErmMeHTOoB)

« HepocTtaTku
* Het 3aWwinTbl OT HApyLLEHUA NPEANONOXEHNS O CErMEHTaUnn

« CrnioxHocTb BblOOpa MoAdenun, OnuUCbIBalOLWEN  U3MEHEHUE
aucnaputeTa BHYTPWU CErMeHTa

* [lpobriemy nepekpbITUA BCe paBHO HeoOXoAMMO pelaTtb Ha
NMUKCESNTbHOM YPOBHE



HeunpoceTteBble MeTOAbI OLLEHKU AUcnapuTeTa



[ nobanbHas oUueHKa HeEUpOCEeTSIMMU

FlowNetSimple

Source: https://arxiv.org/abs/1504.06852
A. Dosovitskiy et. al. FlowNet: Learning Optical Flow with Convolutional Networks. 2015



SceneFlow Dataset & DispNet

Flying Things 3D Driving

« 35000+ nap CMHTETUYECKUX KaapoB
« Cetb DispNet kak nonHbin aHanor FlowNet, Tonbko onga pacyéTta gucnapTuTteTa
« BbasoBbI Noaxoa Ansi rnobanbHOro cTepeoconocTaBneHnst HEMPOCETAMMU

https://arxiv.org/pdf/1512.02134.pdf
Mayer et.al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 2015



https://arxiv.org/pdf/1512.02134.pdf

PCW-Net

7 Combination Volume —7  Warping Volume

!B

1 32x

Left image

Shared weights

-

[132x

Right image
Fig. 2: General Structure of the proposed PCW-Net, which consists of three main
modules as multi-scale feature extraction, multi-scale combination volume based cost
aggregation, and warping volume based disparity refinement.

« PasButne ngen DispNet

fusion
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» OOyu4eHmne Ha SceneFlow + nooby4eHne Ha pearnbHbIX JaHHbIX NO4 AaTaceT

Shen. et.al. PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. ECCV2022

(https://github.com/gallenszl/PCWNet )



https://github.com/gallenszl/PCWNet

Practical Stereo Matching

Train I Inference
: ¢ 1 1 1
16 8 4 "
offset ! » RUM —* RUM —* RUM
I A
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— RUM —* I 32 16 3
A | RUM RUM RUM
A
: 1 1 1
1 L Binchdispaiity: ) o 2 16
7 P I ﬂ » RUM ~“» RUM ~» RUM
Positional . : )
Encoding Self-attention : —* Single stage Two stages----*Three stages

Figure 2. An overview of our proposed network. Left: A pair of stereo images I; and /5 are fed into two shared-weight feature extraction
networks to produce a 3-level feature pyramid, which is used to compute different scales of correlations in the 3 stages of cascaded recurrent
networks. The feature pyramid of /; also provides context information for latter update blocks and offsets computation. In each stage of
the cascades, the features and the predicted disparities are refined iteratively using the Recurrent Update Module (RUM, Sec. 3.2), and
the final output disparity of the former stage is fed to the next as an initialization. For each iteration in RUM, we apply Adaptive Group
Correlation Layer (AGCL, Sec. 3.1) to compute the correlation. Right: Our proposed stacked cascaded architecture in inference phase,
which takes an image pyramid as input, taking advantage of multi-level context, as detailed in Sec. 3.3 .

Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation (CVPR 2022)



https://github.com/megvii-research/CREStereo
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Figure 3. The architecture of proposed modules.
(AGCL). Details are described in Sec. 3.2 and Sec. 3.1, respectively.

* KombuHupoaHue 1D n 2D nouncka B OKPECTHOCTAX
« Ablation study gnsa Belbopa onTuManbHOW KOHGUrypauum
¢ OaunHakoBOE YMCIo rnnoTes

« JledbopmMmupyemMble OKHa NoUcKa O OLEeHKU
Koppenauum

 MHoOro anieMeHTOB U3 Opyrnx metoaos — self-attention,
rpynnmpoBka u T.4.
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Left: Recurrent Update Module (RUM). Right: Adaptive Group Correlation Layer
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Figure 4. Illustration of the adaptive local correlation. The top and
the bottom are 2D and 1D situations respectively, which share the
same number of searched neighbors to produce correlation maps
in the same shape.

D offset



HoBbI CUHTETUYECKUN OaTaceT

Figure 5. Example image-disparity pairs of our synthetic data
featuring various shapes and textures (repetitive-texture, reflective
non-texture surface, etc.)

584 Training Loss ~ ETH3D Bad 2.0 & Middlebury Bad 2.0
Sceneflow 3. Sceneflow | Sceneflow
— Ouis'35k 2011 == Qurs 35k 401 % — Ours 35k
101 i i \ i
O L | - | N O i ' | ’ | ' ¢ ’ ' kA 7
0 20000 40000 0 20000 40000 0 20000 40000

Figure 6. Training loss and ETH3D / Middlebury validation error
of models trained with Sceneflow and our synthetic dataset.



Argoverse Dataset

 HoBbIn gataceT, BaoxHoBMeHHbIN KITTI ot ctaptana ArgoAl
(Carnegie Mellon University & Georgia Institute of Technology)

16M
KITTI Stereo 2015
14M - KITTI Stereo 2015
12M KITTI Stereo 2015: ATgOverse:Stereo
- Number of disparity maps: 200 Argoverse Stereo
- Resolution: 1242x375
v 10M - Baseline: 0.54 m
& - Focal length: ~707 px
© 8M Argoverse Stereo:
@ - Number of disparity maps: 5,530
= EM - Resolution: 2464x2056
= ) - Baseline: 0.2986 m
- Focal length: ~3,757 px
4M
2M
0 J k*

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Depth (m)

Willson et.al. Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting. NeurlPS 2021 (link) ArgoAl


https://www.argoverse.org/av1.html#stereo-link

KITTI 2015 (dbeBpanb 2023)

Evaluation ground truth | All pixels v|  Evaluation area | All pixels v
Method Setting Code Di-bg D1-fg Di-all Density Runtime Environment ’ Compare ’

1 GANet+ADL 1.38% 2.40% 1.55% 100.00% 1.8s GPU @ 1.5 Ghz (Python) D

2 IGEV-Sterec 1.38% 2.67% 1.59% 100.00% 0.18s NVIDIA RTX 3090 {PyTorch) D

3 RCA-Stereo 1.40% 2.71% 1.62% 100.00% 0.40 s 1 core ® 2.5 Ghz (Python) O

E UPFNet 1.38% 2.85% 1.62% 100.00% 0.25s 1 core @ 2.5 Ghz (C/C++) O

5 ERNet 1.36% 3.09% 1.65% 100.00% 0.2s 1 core @ 2.5 Ghz (Python) [:]
ERROR: Wrong syntax in BIBTEX file.

- M-FUSE =& code 1.40% 2.91% 1.65% 100.00% 1.3s GPU O
L. Mehl, A Jahedi, J. Schmalfuss and A. Bruhn: M-FUSE: Multi-frame Fusion for Scene Flow Estimation. Proc. Winter Conference on Applications of Computer Vision (WACY) 2023.

7 SF2SE3 [i.!‘_[ code 1.40% 2.91% 1.65% 100.00% 2.7s GPU @ >3.5 Ghz (Python) D
L. Sommer, P. Schroppel and T. Brox: SF2SE3; Clustering Scene Flow into 5E (3)-Motions via Proposal and Selection. DAGM German Conference on Pattern Recognition 2022

8 LEAStereo code 1.40% 291% 1.65% 100.00% 0.30s GPU @ 2.5 Ghz (Python) D
X. Cheng, Y. Zhong, M. Harandi, Y. Da:, X, Chang, H. L1, T. Drummeond and Z. Ge; Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020,

9 ACVNet code  1.37% 3.07% 1.65% 100.00% 0.2s NVIDIA RTX 3090 (PyTorch) O
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Cancatenation Yolume for Accurate and Efficient Stereo Matchipg. CVPR 2022,

10 CGF-ACV 1.31% 3.37% 1.65% 100.00% 0.25s 1 core @ 2.5 Ghz {Python) O

1 DCANet 1.42% 291% 1.66% 100.00% 0.18s 3090TI GPU O

12 PCWNet code 1.37% 3.16% 1.67% 100.00% 0.445 1 core ® 2.5 Ghz (C/C++) O
Z. Shen, Y. Dat, X, Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Viston{ECCV) 2022

13 LaC+GANet code 1.44% 2.83% 1.67% 100.00% 1.8s GPU @ 2.5 Ghz (Python) O
B. Liu, H, Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stareo Matching Networks. Proceedings of the AAAl Conference on Artificial Intelligence 2022,

14 GweNet-DCA 1.43% 291% 1.68% 100.00% 024 GPU @ 2.5 Ghz (Python) O

15 GwcNet=ADL 1.42% 3.01% 1.68% 100.00% 0.32s GPU @ 1.5 Ghz (Python) D

16 CREStereo code 1.45% 2.86%  1.69% 100.00% 0.415s GPU @ »3.5 Ghz (Python) 0

J. U1, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via Cazcaded Recurrent Network with Adaptive Correlation. 2022,
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Pe3tome BUHOKYNSIPHOrO CTEPED &

« BuHOKynsapHOe cTepeo pa3dbmBaeTcsa Ha 3 LWara — pekTudukauus,
CTepeoconocTaBrneHne n TpMaHrynsauus

« KnoyeBblie ngen gns cTepeocornocTaBJiIEHUA.

« JlokanbHOe conocTaBreHue (O4ns KaXxgoro nukcena He3aBMcUMO)

« [nobanbHoe (ana BCcex NUKcernos cpasy)

* [lonyrnobanbHoe (HanpumMep, AN KaXxaoro He3aBUCUMO, HO MOYTU
No BCEMY N30DpaeHuto)

* [lepecermeHTayms (ycnosue CBA3aHHOCTU B BU3YyarbHOM
CErMmeHTe)

HenpoceTn no3BonAoT peLwlartb rnodarnbHO, C NCMNofb30BaHMEM COSt
volume

« £BHasA orpaHNYeHHOCTb AaTaceToB Anst 0byyeHuns



OueHka KapT rnyouHbl



3agada OLEHKMN rmyounHbl

Single View Depth Estimation (SVDE)

Raw depth from RGB Image Result

Goddard et. al. Digging into Self- depth sensor
Supervised Monocular Depth
Prediction. ICCV2019
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dToF n npumeHeHne KapT rnyouHbl

PaspexeHHasi kapTa rnyouHbl,
HanomMmunHatwowaa LIDAR

JPPeKT boKe B HOYHOM pekmmMe
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[laTtacet KITTI

400 oTobpaHHbIX KaapoB

20000 ncxopgHbIX Kaapos
cTepeonapbl

obnako Toyek ¢ LIDAR
ONTNYECKNI NOTOK

OOOMETPUS

Geiger et al. Vision meets Robotics: The KITTI Dataset. [JRR 2013



cemMaHTu4eckas cermenTauus anst 1500 kagpos

120000 ncxogHbIX Kaapos
KapTa rayouHbl ¢ Kinect

Silberman et al. Indoor Segmentation and Support Inference from RGBD
Images. ECCV 2012



5000 kappos 20000 kapgpos

50 ropooB, HECKONbKO BPEMEH roAa
30 knaccos 0ObEKTOB

cTepeonapbi

GPS-koopanHaThl

O OMETpUS

Cordts et al. The cityscapes dataset for semantic urban scene

understanding. CVPR 2016




Matterport 3D Dataset

3 combined structured light

Sensors Final building-
. ) scale

Scans are aligned using reconstruction

structure from motion

software

11k panoramic views from
194k RGB-D images of
90 building-scale scenes
RGB, depth, normals,
surface reconstructions, Matterport 3D
camera poses, 2D and 3D e
semantic segmentations

Raw point clouds: color, diffuse shading,
normals



OrpaHnyeHunsa Ha npumepe Matterport 3D

3epkana, orpaHn4yeHHas rnyouHa (Ha ynuue), TOHKMe getanu u T.4.
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OueHka ka4yecTBa

o-metric max( g( )((I;))) ll))()((li)))
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300 0

raw depth ground truth
5<1.05 | 5<1.10 |d<1.25 |5<1.25"2 | 5<1.25"3
Raw depth vs GT 0.895 | 0.912 | 0.929 |0.944 |0.953
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OueHka KapT rnmyouHbl NO N300paXXeHUto



OpaHa n3 nepBbix paboT no SVDE

1a Coarse

25§/ 384 384 2

‘ 256 4096
- W B ©

11x11 conv 5x5 conv 3x3 conv | 3x3 conv | 3x3 conv full full " -
4 stride 2x2 pool
2x2 pool

Coarse |1 Coarse 2 Coarse 3 Coarse 4 Coarse 5 Coarse 6 Coarse 7

64/

9x9 conv Concatenate 5x5 conv 5x5 conv
2 stride

2x2 pool Fine 1 Fine 3

Coarse
Layer input 1 234 5 6 7 1,234
Size (NYUDepth) | 304x228 | 37x27 18x13  8x6 1x1 74x55 74x55
Size (KITTI) ST6x172 | 7T1x20 35x9 1ixd. 1x1  142x27 | 142x27
Ratio to input /1 /8 /16 /32 - /4 /4

Eigen et al. Depth Map Prediction from a Single Image using a
Multi-Scale Deep Network. NIPS 2014



CoBMecCTHas oLeHKa

Inut

Scale 1
/
conv/pool full conn.- :
Iupsample
-
P Scale 2
>
concat [———
conv/pool < convolutions
i upsample

Scale 3

concat - |
conv/pool convolutions

Eigen et al. Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture. ICCV 2015



Oby4yeHne mogenen No ctepeonaHHbIM

1 Left Image A Predicted Inverse Depth
1,(x) cep D(x) = fB/d(x)

/‘m
3 Lw- ll(x)u

Inverse Warping :
Reconstruction Error <« [ (x) = Lh(x+D(x)) _

Warp Image Right Image 15(x)
L (x)

Garg et al. Unsupervised CNN for Single View Depth Estimation:
Geometry to the Rescue. ECCV 2016
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J[laTaceTbl

Dense/  Depth

Dataset sparse type #Samples
DIML Indoor [!+] indoor absolute 220K
MegaDepth [ | 5] general UTS 130K
ReDWeb [-+1] general ~ UTSS 3600
3D Movies [ /] general UTSS S00K
Sintel [ ] general  absolute 1064

NYUv2 Raw [’?] indoor absolute 407K
TUM-RGBD [ 4] 1indoor absolute SOK
DIW [4] general  ordinal 496K

Table 1: Overview of the datasets used in our experiments.
Top: training datasets, bottom: test datasets.



UTS n UTSS

d*~ 1 = C;d1 « Up-to-Scale (UTS), rae d — oueHéHHas rnybuHa

d* =il — Cl (D A4 02) » Up-to-Shift-and-Scale (UTSS), rae D - gucnapuret

Liarizture = lursLsr + Lss1 > Tae ly =1, ecrm ectb UTS nnm
abcontoTHbIe gaHHbIe



CpaBHeHNE pe3ynbTaToB

Input ' Li et al. [4 Li & Snavely [5 MiDaS [6 QOurs, MN-LRN

: Qurs, B5-LRN

Figure 5: Qualitative comparison of depth maps produced by our models and existing competitors. Images are taken from
the DIW dataset and were not seen durine trainino



Busyanmnsauus

Mannequin Challenge

Ours, B5-LRN4 (Li et al.)

Source

MIDAS




MeToabl pelueHnsa 3agadm depth completion



[Tpnumep peweHna Depth Completion

Sensor Depth / Normal Estimation Surface Normal -

!"‘P" G/Glblo imizati
— ' obal Optimization Output Depth

) Boundary Detection
Color Image gundary eteetio Occlusion Boundary

Yinda Zhang, Thomas Funkhouser. Deep Depth Completion of a Single RGB-D
Image. CVPR 2018
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Huang et. al., Indoor depth completion with boundary consistency and self-attention. 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), Oct 2019.
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Decoder
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V.Nekrasov, C.Shen, I.Reid. Light-Weight RefineNet for Real-

Time Semantic Segmentation. BMVC2018
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J. Tang. et. al. Learning Guided Convolutional Network for Depth
Completion. ArXiv 2019
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Backbone Light-weight RefineNet decoder
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. Macka Hanuums & NPU3HaKK >amsung Al Center - Moscow

(a) (b) (¢) (d) (e) (f) (g)
Figure 2: Mask features. (a) input mask , (b)-(d) high resolution features (% X %) (e)-(1)
mid resolution features (—g— X %—) Large values are highlighted. Features of filled regions
tend to be small and constant while for unfilled areas features might take values in a wide

range. One can also notice large activation values marking the boundaries of objects that
might also be helpful for depth inpainting.
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* BbluncneHme notepb B fiorapnpmMmyeckon Lwkane, crnenysa npakTtmke oueHKu
rnyouHel no RGB n3obpaxeHnsam

L(d;.d) ](9] ,;’QIIO odi —d

e d; - gt depth value
e d;- predicted depth in log scale

* Hanpamyo onTuMnanpyem O-MeTpPUKn
 BepeT K NoBbILLEHMNIO TOYHOCTU



CpaBHeHune Ha Matterport3D

Sensor Gansbeke et al. Liet al. Huang er al.

Figure 5: Qualitative comparison with Gansbeke et al. [17], Li et al. [20], Huang et al. [! 5] on Matterport3D test set. We
train [42] and [20] on Matterport3D using the official code of the corresponding approaches, and results for [! ] are based
on the official pretrained model. Rows 2 and 4 represent zoomed-in fragments from rows 1 and 3, respectively. All images
are created using color maps with the same value limits. Our model generates the completed depth map with very sharp
boundaries.



YucneHHble oUueHKN

RMSE| | MAE] | d1057T | 011017 | d1251T | 019527 | 012537 | SSIM?T
Huang eral. [ 1 7] 1.092 0.342 0.661 0.750 0.850 0911 0.936 0.799
Zhang et al. [1+] 1.316 0.461 0.657 0.708 0.781 0.851 0.888 0.762
Gansbeke er al. [ ] 1.161 0.395 0.542 0.657 0.799 0.887 0.927 0.700
Lietal [20] 1.054 0.397 0.508 0.631 0.775 0.874 0.920 0.700
Gansbeke et al. [ ] (ours) 1.264 0.484 0.675 0.741 0.826 0.888 0.920 0.780
Lieral [20] (ours) 1.134 0.426 0.649 0.729 0.0.834 0.899 0.928 0.774
DM-LRN (ours) 0.961 0.285 0.726 0.813 0.890 0.933 0.949 0.844
LRN (ours) 1.028 0.299 0.719 0.805 0.890 0.932 0.950 0.843
LRN + mask (ours) 1.054 0.298 0.737 0.815 0.889 0.933 0.950 0.844

Table 1: Matterport3D TEST. We use the results for Huang er al. [ 5] and Zhang et al. [1~] reported in [ | 5]. Gansbeke et
al. [42] and Li er al. [20] are trained on Matterport3D using their official implementations. Models labeled as “ours™ are
trained using our proposed pipeline. The two bottom rows represent models without the decoder modulation branch, with
and without the mask on the input. RMSE and MAE are measured in meters.



SMMNNIMPOBaHME AaHHbIX Ansl 00y4YeHus
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(b) Initial real sensor (d) Quickshift [+ 3] (f) Uniform [27]



BusyanbHoe cpaBHeHne Ha NYUv2

Gansbeke et al. Lietal [20]
42]

Figure 7: Qualitative comparison with Gansbeke et al. [12]. Li et al. [20]. Huang et al. [15] on NYUv2 [25] test set. All
models are trained using our semi-dense sampling strategy. The third and fourth raws present a hard example.

Huang et al. [ 17]



YucneHHble oUueHKN

semi-dense sparse (500 points)
RMSE | | rel| | d1.2957 | d1.052 T | 01958 T | RMSE ] | rel | | d1.25 T | 01952 T | d1.053 T
Huang et al. [15] 0.271 ] 0.016 | 98.1 99.1 99.4 B - - - -
Gansbeke er al. [12] | 0.260 | 0.017 | 97.9 99.3 99.7 0.344 1 0.042 | 96.1 98.5 99.5
Lieral [20] 0.190 | 0.018 | 98.8 99.7 99.9 0.272 1 0.034 | 97.3 99.2 99.7
DM-LRN (ours) 0.205 | 0.014 | 98.8 99.6 99.9 0.263 | 0.035 | 97.5 99.3 99.8

Table 3: NYUv2 TEST. Quantitative comparison of training setups for different models. Semi-dense sampling preserves more
accurate information that leads to better results. Although our approach is not intended to be applied to sparse depth sensors,
it demonstrates strong results in the sparse training setting in indoor environments. We do not use any densification scheme
for target depth reconstruction. Pseudo-sensor data is directly sampled from real sensor data.
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« CeHcopbl rnMyouHbI NO3BOSIAKT OLLEHUTb rMyouHy ro 1
pakypcy, 6e3 ctepeo. Ho MMeroT orpaHNUYeHuns

* C nomoubto DL Mbl MOXeM oueHmnBaTb rnmyounHy 6e3
CEHCOPOB N 6e3 CTepeon, HO NOKa He TakK XOpOLLO

« CeHcopbl rMyOMHbI MO3BONAIOT NONYYUTb MHOIO 0BYyYaroLLINX
OaHHbIX, HO HenaeanbHbIX

« CTepeo AgaHHble pa3HOObpa3Hbl, HO AN HUX HET 3TarnOHHbIX
peLleHnmn

* Bce obwme HapaboTkn moaenen rnrnoTHOW pasmMeTKu
N300paKeHnn nepeTekaroT B 3aJa4M OLUEHKN IyOUHBbI
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