Kypc « ThéxmepHOe KOMIMbIOMEPHOE 3PeHUE»

Tema Ne7
«PeKOHCTPYKUUA KapTbl FMYyOUHbI»

AHTOH KOHYLUWH
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Kak nony4nTb KapTy rmyounHb!?

BbuHoKynspHoe
cTepeo

MHorosmgoBsoe
cTepeo

Infro-Red Projector Low-res Low-res
(projects dots) RGB Camera In

Single RGB Image Depth Map
[TpegckasaHue rnyouHbl CeHcop rmyouHbI



buHOKynsapHoe cTepeo



[1NoTHOE DMHOKYNAPHOE CTEPED

Human-Eye Brain
Separation(~6.5cm)

Computer
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Left 2D Image Right 2D Image 3D View

« 3agaya NNoTHOro OUHOKYNSAPHOro CTepeon: BoccTaHOBUTL B 3D BCce BUOAUMbIE
Ha 2-X N300paXXeHUsAX TOYKU
« KannbpoBky kamep Oyaem cuyntaTb N3BECTHOM

Cnaiin: M. Bleyer



« [lapannakc - Bugnmoe cMmelleHne obbekTa B 3aBUCUMOCTU OT TOYKU
ob30pa

« YeM oOBbekT bnmxke, TeM cmeLlleHune dornblue



Ctepeorncuc

«Ctepeoncuc (aHrn. stereopsiS) - CEHCOPHbIN TMPOLECC, BO3HUKAKOLIMA TPU
OMHOKYNAPHOM  3pEHUM  KaKk  nNcuxodmanveckast peakuuss Ha  CETYaTOuYHYH
ropusoHTanbHyt0 agucnapatHocTb. B pesynetate C. CcyObekT nepexunBaer
cneundunyeckoe oLyuweHne rmyounHbl. <...> ».

(Mcuxonornyeckas aHUMKNoneans)

JleBoe n3obpaxkeHue [TpaBoe nsobpaxeHue



Obwasa cxema

PekTndomnkaumns n3aodbpakeHmn

~_

Bbluncrnenme COOTBETCTBYHOLLUNX TOYHEK

\/

BocctaHoBneHnune 3D nyTem TpuUaHrynaumm



Pektndpunkaumna

» «Pektndmkaumnsa» — npeobpasoBaHue cTepeonapbl B N300paxeHus, B
KOTOPbIX COOTBETCTBYHOLLNE INUMNONSAPHbIE NUHUK NeXaT Ha OOQHOU U
TOW XK€ ropnsoHTanbHON CTPOKe

* [lepBbi cnocob: NnpoeumpoBaHMe Ha OOLLYIO NITOCKOCTb C MOMOLLbIO
romorpapuu



HepnocTtaTtku:
* He npnmeHnm, Korga kKamepa OBUXETCS Brnepen nnv Hasan
* CnbHble UCKaXXEHUA B HEKOTOPLIX Cny4asax



PagnanbHasa pa3BepTka

« Polar rectification

* I/IH,u,eKcmpyeM aAnnnondpHbie NNHN YoM
NnoBOPOTA OTHOCUTETIBHO 3MNMUMOJIN

« Konupyem COOTBETCTBYIOLLME Naphbl
AMUMONAPHbLIX NIMHUM NocregoBaTesibHO B
COOTBETCTBYHOLLNE MOPU3OHTANN
PEKTUUNLINPOBAHHLIX N300paXkKeHnm

« PaboTtaet B Tex cny4asix, korga
owinbaeTcs MeTo NPoeLMpoBaHNS Ha
oOLL Y0 NITOCKOCTb
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peKkTndunkaumnsa







Obwasa cxema

PekTndomnkaumns n3aodbpakeHmn

~_

Bbluncrnenme COOTBETCTBYROLLUUX TOHEK

~_

BocctaHoBneHue 3D nyTem TpUaHrynsaumm




TpuaHrynauus
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Cnarig: M. Bleyer



TpuaHrynauus
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TpuaHrynauus
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Cnanin: M. Bleyer
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TpuaHrynauus &
3 nogobua TpeyrosibHNUKOB:
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Xi, Xr - CMeLleHNs OTHOCUTENBHO I'IpVIHLI,VIFIVIGJ'IbHOﬁ TOYKN



Obwasa cxema

BbluncneHumne KapTbl ANCMNapuUTeTa

PekTndukaumsa n TpuaHrynaumsa — TEXHUYECKUe 3agadvm, OCHOBHOM
NHTEpPEC 3TO CTEPEOCONOCTaBreHne



JlokanbHble MeTOAbI OLIEHKU AUCNapuUTeTa



CtepeoconocTaBlieHMe Yepes Bbl4MCNEHNE ANcnapuTeTa

InNnnonsipHoe orpaHNvYeHune:
«COOTBETCTBYIOLLME TOYKM fleXXaT Ha O4HOWN CTPOKE»

Kakou oucnapurter y aTou
TOYKMN? Kak HanTu noxoxme?



OCHOBHble TPYOHOCTU

«l'noxo» TekcTypupoBaHHble 0bnacTu

1 — OgHopoaHas obnacTtb
2 — TekcTypa HEM3MEHHa B ropu3oHTaNIbHOM HanpaBneHnu
3 — [NoBTOpSAOLWAACA TEKCTypa



OCHOBHbIE TPYAHOCTU

I3MmeHeHne LBeTa TOYKMK MeXay pakypCaMi

LLlym kamepbl, "3MeHeHNe OCBELLEHHOCTU, MOrPeLIHOCTY
CAMNINMPOBaHUSA U T.A.



OCHOBHble TPYOHOCTU

[lepekpbITUA

HekoTopble NMKcenun ogHoro
n3obpaxeHnst MoryT OblTb HE BUOHbI
(NepekpbIThl) HA ApYyroMm.

«HeBuagnmble» obnacTn Ha3bIBaAOT
obnactamMmmn nepekpbITUS

halft-occluded

half-occluded
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left camera

right camera

Cnanin: M. Bleyer




OCHOBHble TPYOHOCTU

[lepeKkpbITnS

[Tpumep obnacten nepekpbiTUS (BblAENEHbLI KPACHbIM)

Pucynoxk: M. Bleyer



JNlokanbHble MeToAbl BUHOKYNAPHOro CTEPEO &>

* JlokanbHble, T.K. AUCNAPUTET B KaXX40MN TOYKE 3aBUCUT TOMNbKO OT ee
NnoKanbHOW OKPECTHOCTM

* Wcnonbaytot cTtpaternto WTA (Winner-Take-All), T.e. B Kaxxgon To4ke
«nobexnaeT» COOTBETCTBME C HAMMEHbLLEN KCTOUMOCTbIO»



HaunBHbIM anroputm

e CTOMMOCTb COOTBETCTBUS — PA3HOCTb NHTEHCUBHOCTEN MUKCENEN
« Peaynbrar — CNULWKOM MHOTO LUyMa

Mpumep paboTbl HAMBHOrO anropuTMma

[Tpumep: M. Bleyer



HaunBHbIM anroputm
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Y4YeT OKPEeCTHOCTU &>

« CtoumocTtb cooTtBeTcTBUA — SAD, SSD, NCC no OokHYy BOKpYr NUKCens

d» =argmin > c(q,q—d)
O<d<dmax qgeWp
roe:
dy — NCKOMBbIM gUCrapuTeT B NUKcerne p,
c(p,q) — PYHKUMA CTOMMOCTHN,
Wp — OKHO BOKpPYT nukcena p,
dnax  — MakcMmanbHO BO3MOXHbIW AncnapuTteT

 Bo3MmoOXHa o4eHb a(pdeKTUBHASA peanusauuns
« MeToa «CKOMb3SALWEro oOKHa»



[Tpobnema BbIOOpa pa3mepa OKHa

 ManeHbKkne okHa — HegocTaTo4YHO TEKCTYpPbI

* bornblne okHa — apdekT «pasgyBaHUsa» OOBLEKTOB nepeaHero
nnaHa (foreground fattening)

Ground truth OkHO 3x3 OkHO 21x21

N S

[Tpumepsr: M. Bleyer



Oby4yeHmne ¢ nomoulbto CNN
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J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015



[laTtacet KITTI

400 oTODOpaHHbIX KaApOB

20000 ncxogHbIX Kaapos
cTepeonapbl

obnako Toyek ¢ LIDAR
ONTNYECKNI NOTOK

OLOMETPUS

Geiger et al. Vision meets Robotics: The KITTI Dataset. IJRR 2013



[Tpumep pesynbTaTta Ha KITTI 2015

g o

;.. Ownbka 14.7% ans winner-take-all
~ cTparterumu

v

Owwnbka 2.61% npun ncnonb3oBaHUn
METPUKKN BHYTpU semi-global ctpaternu
(ngeto paccMmoTpum gansLie)

MeTpukn — gucnapuTeT B NMUKcene BEPHbIN, ecrnn owmnbka <3px (Mnm 5%)

https://www.cvlibs.net/datasets/kitti/index.php



https://www.cvlibs.net/datasets/kitti/index.php

OueHka Ha gaTtacete KITTI 2015

Stereo Evaluation

Rank Method Setting Code Out-Noc Out-All Avg-Noc Avg-All Density Runtime Environment Compare

! Displets code 2.47% 3.27 % 0.7 px 09%px 100.00% 265% *8 cores @ 1.0 Gha (Matiad « C/Cs+)

wwicdge. Conferance on Computsr Vision and Pattern Racognition (OVPR) 2015

2 ML -ONM 1.61% .84 % 0.8 px 1.0 100.00 % 100 ¢ Nvidia GTX Titan (CUDA, Lua/ Torch))

J. Toontat 3ad Y. LaCen Congutiag O S3res Matohing Cost with 5 Cawo

Conferance on Computer Vision and Fattern Racagnition (OWPR) J015

3 PRSM Tz 2785 3.00% O7px O7px 100.00% 300s | core @ 2.5 Ghz (T/Cse)

- 5 StH = 2833 3.64%

K Yamapuchki, 0. McAliestor and & Urtoon: £Hicient Soint Sepments

1core @ 3.5Gh {C/Cee)

Occiucion Labeling. Ltarso and Fow Eshimaton. 00V 2014

s V- e 3.05% .31 O8px OB8px 100.00% 300 $ ! core @ 2.9 Ghe (C/C++)

C. vogel S, Rath Jod K. Schindler: View Consistest 3D Scene Flow Estimatuon ower Multiple Frames. Proceedings of faropean Conference on Competer Yision. Lectae Notes i, Computer Science

6 OsF = ode  3.783 4,07 % 0.8 px 09px 99.98 50 rrn 1 core @ 3.0 Ghz (Matlad + C/Ce+)

M. Mercr and 2 Geiger: Object Scene Flow for 2atonomoos Yehices. Confeorsnce on Competer Vizion and Patiare Sscognition (CVR) 20135

7 CoR ode 3.30% 4.10% 08p 09%px 100.00% 63 6 cores @ 3.3 Gha (Matiab « C/Css)

A Chskradart nong Gortier and Wi Low vel Vizion Sy Consensus 3 Spatial Herarchy of Regsons. CVR 2012
1 : : A% M0px  100.00%: 2Zs | core @ 3. : ;
K o R Urtes £t t oint 5 Latio ki sheling  Stereo snd Flow Estimation, ECCY 2014
V 1.9px 100.00 % : S min ! 4 cores @ 2.5 Ghz (Matiab + T/Ces) P
L CYPR 2012
1.0 px ¥ 100.00 % I 1 min l | core @ 2.5 Ghz (Matlab « C/Cee) !

V-Contesrance, 2014 mtamationsl Confarencs on 2014

1" StereoSlLiC 192%  S11S | 0.9 1.0¢

00 89 .35 1 core @ 3.0 G (CrC++)
¥ MoNOOAS TRiosiar Fow Tstimation 1)
1.9 px 1.0 px 200 5 4 cores § 3.0 Ghz (Mattab + C/Ce+) i
mtarsncs on Comygs KoYy 201

S min 4 cores @ 2.5 Ghg (Matiab - C/C++)

0.9 px 1.1 px

mm Fisids for fobust Sterso Extemation. €00V 2012

14 CSPMS 413 % 3.92% 1.2 px tbpx 1N.00% 6s 4dowes 22

15 VEM 4.35% S43% 1.0 px 1.1 px 100.00 % 03Zs | cwe @ 3.0 G (C/Cs-+)

Anomymow wbmnlion
6 PR-Scerefiow 436%  S.22% 1 09px  Lipx  100.00% 0 150 s 4 core ® 2.0 Ghz (Matisd - C/Ce+)

C Vogel S Roth and & Schindller: Plecewise Rigid Scete Flow. Mternational Conference on Computer Yision {(CCV) 2011

e PO S e s am = = s = .n o S n: wyer= 4. S R LY .

The KITTI Vision

Benchmark Suite

A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

3607 Velodyne Laserseanner

https://www.cvlibs.net/datasets/kitti/index.php



https://www.cvlibs.net/datasets/kitti/index.php

[ mobanbHble METOAbI OUEHKU ancnaputeTa



=
[[nobanbHble meToabl &>

« [nobGanbHble, T.K. ANCNAPUTET B KaXKOOM TOYKE BblYMCIAETCH Npu
MOMOLLIN HEKOTOPOW rnmobanbHon npoueaypbl ONTUMU3aLINK, T.€.
3aBUCUT HE TOJTbKO OT NTOKaribHOW OKPECTHOCTU

« B po-HenpoceTeBbix MeTogax dopMynMpYOTCA B TEPMUHAX Pa3METKM
rpada n MMHUMU3ALMN SHEPTUN

B HeunpoceTeBbiXx MeETOAAX — OQHOBPEMEHHOE npeackasaHne BCeN
KapTbl rMyOUHbI



[ nobanbHble MeToabl

Heobxoanmo HanTu pasmeTky D,
MUHUMUINPYIOLLYIO PYHKUMIO 9Heprum E(D).

MeTKn — 3Ha4YeHuns ancrapumnTteTta.

[pad — peLleTKka, y3nbl — MUKCENN.

E ( D) :/Edata (D) T Esmooth (D)
COOTBETCTBME LIBETOB [NagKkoCTb

Pucynok: M. Bleyer



[Tpobnema coxpaHeHus rpaHuy E>

[MpeanonoXxmm, HeobxoaMMo BOCCTaHOBUTL AMCNapUTET B obnacTu
rpaHnLbl MeXOy oObeKkTaMu, Kak NokasaHo Ha PUCYHKe

>
1
I
I
I
I

Hucnaputet

X-KOOpauHaThI

Pucynok: M. Bleyer



[Ipobnema coxpaHeHus rpaHul &
Cnyyaw NMHENHON Moaenu: s(dp,dq) = ‘dp _ dq‘ P

Bknaa B aHepruio:. Bknaa B aHepruio:.

opP op
HA HA
= = op

—_— o o o

X-KOOpANHATHI > X-KOOpAUHATHI >
(HeBepHOE peLLeHnE) (BepHOE peLleHmne)

JTnHennaa mogenb He NoOoLpPAET Pe3KMX pa3pbiBOB AMCNapUTeTa.
OHa 4yepecuyp CrnaXmBaeT peLUEHME. Pucynok: M. Bleyer



[Tpobnema coxpaHeHus rpaHuy

Cny4an nuHerMHou Moaenu: S(dp, dq) = ‘dp - dq‘ - P

[Mpumep pesynsraToB Ansa nmHenHom mogenun. CripaBa nokasaH
YBENUYEHHbLIN pparMeHT

[Tpumepsr: M. Bleyer



[Tpobnema coxpaHeHus rpaHuy =L
(0,d» - do
Cnyyaii mopenu MoTTca; S(dp, dq) =<
P,dp - dq
Bknap B aHepruio: Bknapg B aHepruio:
op P
A A
| P
) P 3
S p 5
- e - p
p [
P [
i
X-KOOpAUHATHI > X-KOOpAUHATHI >
(HeBepHOE peLleHne) (BepHOE peLleHune)

 Mogens NoTTCca He NpenaTCcTBYeT pe3knMm paspbiBaM gucnapureTa.
« Takue moaenu HasblBaloT COXpaHSALWMMM pa3pbiBbl (discontinuity preserving) — Kak
N B ONTUYECKOM MOTOKE Pucynxu: M. Bleyer



[Tpobnema coxpaHeHus rpaHuy

0,dp - dq

Cnyyait mogenu NMoTTca: s(dp, dq) — <

KP,dp * dq

[Tpumep pesynsraTtoB ang mogenu Notrca. Cnpasa nokasaH
YBENUYEHHbLIN PpparMeHT

[Tpumepsr: M. Bleyer



MnHMMn3auna aHeprmm o)

e [1noTHoOe cTepeo — 3agavya MHOIOKNaccoBOW pa3MeTKU

« OddekTnBHOE pelleHne Ha rpade obulero Buaa cyLecTByeT NnLlb
ANsi BbINYKIbIX OTHOCUTENbBHO |d; - d | napHbIX noTeHumanos [Ishikava,
2003]

* Ho Heobxogmmo ncnonb3oBaTb MOAENN, COXPaHAKLLME rpaHnUbl, a
OHW HEBbIMYKIbl OTHOCUTENbLHO [d, - d|

 3agada ctaHoButca NP-nonHou

« Heobxogumbl NpuUbMMXEHHBLIE anropUTMb
* Fusion move, Loopy belief propagation, TRW

* AnbTepHaTUBHbLIM BapuaHT — yxof OoT rpadoB obLulero Buaa K
OoepeBbam

H. Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors. PAMI, 2003.



[lepexon K AepeBbam

« OTcyTCTBME LIMKMOB NO3BOMSAET UCMNOMb30BaTb METO
OVNHaMUYECKOro NporpamMmMnpoBaHus

* [nobarnbHbIN MUHUMYM, NPOU3BOSIbHAA 3HEPIUS,
BbICOKasi CKOPOCTb paboThl

* [naBHbIN BONPOC — Kakne pebpa ybupartsb?

Pucynku: M. Bleyer



Anroputm Scanline Optimization

e o — — —

e e ™ | — —

« YpanawTca Bce BepTukanbHble pebpa
« Tak noctynanu B nepBbiX NOAOOHbLIX anropuTMax

Pucynku: M. Bleyer



Anroputm Scanline Optimization

OueBunaHaga npobrnema — paccornacoBaHHOCTbL CTPOK Mexay cobom
(horizontal streaking)

[Tpumep: M. Bleyer



AnNroputm Ha ocHoBe MST

Npnes — He popcupoBaTh rMagkocTb Mexay NMKCenamm
CUNbHO pa3Horo uBeTa

Kaxxgomy pebpy (nape nukcenen P v () npuceamBaeTcH
BEC:

w(p,q) = 1(p)—1(a)]

CTpoutca MMHUMarnbHOE NoKpbliBaKLLee nepeBo
(Minimum Spanning Tree, MST)

Pucynok: M. Bleyer

O. Veksler. Stereo Correspondence by Dynamic Programming on a Tree. CVPR, 2005.



Anroputm Ha ocHoBe MST

Jlyywe, yem scanline optimization, HO HEKOTOpasi paccornacoBaHHOCTb
ocTaetcs



Anroputm Semi-Global Matching

B KaXkgom nmukcene CTpouTCA CBOE OepPEBO

OnTnmMmnsaums NPon3BoaNTCH BAOMNb Ny4Yen,
ncxoasaLmx ns nuKkcens

[logoxoa He coBceM rnobanbHbIW, HO U HEe
rioKanbHbIN

Pucynox: M. Bleyer

H. Hirschmueller. Accurate and Efficient Stereo Processing by Semi-Global Matching
and Mutual Information. CVPR, 2005.



Anroputm Semi-Global Matching

PaccornacoBaHHOCTM HET, HO ECTb «N30JTINPOBaAHHbIE» TNMUKCEJTN



AnroputmMm Simple Tree
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Pucynku: M. Bleyer

B kaxkgoom nukcerne cTposiTcs ABa AepeBa, COBMECTHO NMOKPbIBAOLLINX
BCe n3obpaxeHne. ANroputm rnodanbHbI U NULLIEH HegocTaTka SGM.

M. Bleyer, M. Gelautz. Simple but Effective Tree Structures for Dynamic Programming-
based Stereo Matching. VISAPP, 2008.



Anropuntm Simple Tree

[Tpnmep paboThl



Icnhonb3oBaHMe cermeHTaumnm

* Wcnonb3yeTtca npennosioxxeHne o cerMeHtaumm («obractu paspbiBa gucnaputeta
coBMnagarT C KpasgMn Ha U3obpaxeHum)

« [na ero peanusauum NPUMEHAIOT MepecerMeHTauuio (T.e. CerMeHTbl OOCTaTO4YHO
Merikue, «C 3anacom»)

=T
|ﬂ ‘0 ] w
2
| I A eyl
NcxogHoe Pesynerar [paHnUbl 06bEKTOB
n3obpaxeHue cerMeHTaumm

* [lponcxoanT nepexod M3 MUKCENbLHOrO MNPOCTpPaHCTBA B MPOCTPAHCTBO CErMeHTOB.
[ MagKoCTb BHYTPU CErMeHTOB opcupyeTcs
e 3TOT nogxod cenyac nokasbiBaeT Hauny4wmne pesyneraThl
« BoamoxHo, nepeobyyeHne Ha Middleburr
peoby y [Tpumepsr: M. Bleyer



- o J\'—"}L
Ba30BbIii anropuTMm ¢ cermeHTaLmen &>

» [lepecermeHTauus
* WMHunymanusauyus pelueHusd
« Jltobon nokanbHbIM anropmuTM Ha NMUKCENSX
« Annpokcnumauns CErMeHTOB rnagknmm noBepPXHOCTAMM
« Mopgenb: nnockocTb, B-cnnavH
 CpepnctBo: RANSAC, ronocoBaHue u T.A.
* YTOYHEHWE PA3METKN CETMEHTOB
 Iterated Conditional Modes (ICM), Cooperative Optimization n gp.



S22
Mcnonb3oBaHue cermeHTauun &>

* [lpenmyuiecTBa
 HapexHocTb B 06nacTtsax co cnabon TEKCTYpOou

 CHwXeHMe pasMepHOCTM 3adadnm (onTMMmM3auud Ha YpPOBHE
CErmMeHTOoB)

« HepocTtaTku
* Het 3aWwinTbl OT HApPYLLEHNA NPEONONOXEHNS O CErMeHTauun

« CrnioxHocTb BblOOpa MoAdenun, OnuUCbIBalOLWEN  U3MEHEHUE
aucnaputeTa BHYTPU CErMeHTa

* [lpobriemy nepekpbITUN BCe paBHO HeoOXoAMMO pelaTtb Ha
NMUKCESNTbHOM YPOBHE



HeunpoceTteBble MeTOAbl OLLEHKU AUCnapuTeTa



[ nobanbHas oUueHKa HeEUpOCEeTSIMMU

FlowNetSimple

FlowNetCorr

Source: https://arxiv.org/abs/1504.06852

A. Dosovitskiy et. al. FlowNet: Learning Optical Flow with Convolutional Networks. 2015




SceneFlow Dataset & DispNet

Flying Things 3D Driving

« 35000+ nap CMHTETUYECKUX KaapoB
« Cetb DispNet kak nonHbin aHanor FlowNet, Tonbko gna pacyeTta aucnapturera
« BbasoBbI Noaxoa Ansi rnobanbHOro cTepeoconocTaBneHnst HEMPOCETAMMU

https://arxiv.org/pdf/1512.02134.pdf
Mayer et.al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 2015



https://arxiv.org/pdf/1512.02134.pdf

PCW-Net

ﬂ 16x

1 32x

Shared weights

-1l

Right image
Fig. 2: General Structure of the proposed PCW-Net, which consists of three main
modules as multi-scale feature extraction, multi-scale combination volume based cost
aggregation, and warping volume based disparity refinement.

- PasButne ngen DispNet

~ Multi-scale

| bl Stacked
‘ cost volume
8 x A >

— | Fogion | | hourglass

I ' . .

| 4x Multi-cost 3D aggregation |

— Refinement ’

S network ’

Warping volume based disparity refinement

Final disparity

« OO0y4yeHue Ha SceneFlow + gooby4yeHne Ha peanbHbIX JaHHbIX Mo AaTaceT

Shen. et.al. PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. ECCV2022

(https://github.com/gallenszl/PCWNet )



https://github.com/gallenszl/PCWNet

Practical Stereo Matching

Train I Inference
: g 1 1 1
16 8 4 »
offset ! » RUM —* RUM —* RUM
I A
' I 1 1 1
—» RUM — I 32 16 8
A 1 RUM RUM RUM
A
: i f 1 1
: L Bindidipaity: ! & 3 T
7 P I ﬂ “» RUM ~» RUM - > RUM
Positional ; : .
Encoding Self-attention : — > Single stage Two stages----=*Three stages

Figure 2. An overview of our proposed network. Left: A pair of stereo images /; and /5 are fed into two shared-weight feature extraction
networks to produce a 3-level feature pyramid, which is used to compute different scales of correlations in the 3 stages of cascaded recurrent
networks. The feature pyramid of /; also provides context information for latter update blocks and offsets computation. In each stage of
the cascades, the features and the predicted disparities are refined iteratively using the Recurrent Update Module (RUM, Sec. 3.2), and
the final output disparity of the former stage is fed to the next as an initialization. For each iteration in RUM, we apply Adaptive Group
Correlation Layer (AGCL, Sec. 3.1) to compute the correlation. Right: Our proposed stacked cascaded architecture in inference phase,
which takes an image pyramid as input, taking advantage of multi-level context, as detailed in Sec. 3.3 .

Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation (CVPR 2022)



https://github.com/megvii-research/CREStereo
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Figure 3. The architecture of proposed modules. Left: Recurrent Update Module (RUM). Right: Adaptive Group Correlation Layer

(AGCL). Details are described in Sec. 3.2 and Sec. 3.1, respectively.

*  KombuHupoaHue 1D n 2D noncka B OKPECTHOCTAX
« Ablation study gna Belbopa onTuManbHOW KOHGUrypauum
 OpanHakoBoe 4Yucro rmnoTes

« JledbopmMmupyemMble OKHa NoUcKa O OLEeHKU
Koppenauum

 MHoro anieMeHTOB U3 Opyrnx metoaos — self-attention,
rpynnupoBKa 1 T.4.

55 : I offset : fl |

“ W .
LI offset W]
'D .I...- |

Figure 4. Illustration of the adaptive local correlation. The top and
the bottom are 2D and 1D situations respectively, which share the
same number of searched neighbors to produce correlation maps
in the same shape.



HoBbI CUHTETUYECKUN OaTaceT

Figure 5. Example image-disparity pairs of our synthetic data
featuring various shapes and textures (repetitive-texture, reflective
non-texture surface, etc.)

584 Training Loss ~ ETH3D Bad 2.0 &5 Middlebury Bad 2.0
Sceneflow ‘, Sceneflow ; Sceneflow
—— Ours35k | 207t —— Ours35k | 49/ & —— Ours35k
101 i » 4 i
0 L | - '—v e 0 i ' ' ' | ' ¢ ’ ! A ”
0 20000 40000 0 20000 40000 0 20000 40000

Figure 6. Training loss and ETH3D / Middlebury validation error
of models trained with Sceneflow and our synthetic dataset.



Argoverse Dataset

 HoBbIn gataceT, BaoxHoBMeHHbIN KITTI ot ctaptana ArgoAl
(Carnegie Mellon University & Georgia Institute of Technology)

16M
KITTI Stereo 2015
14M — KITTI Stereo 2015
190 KITTI Stereo 2015: AIGONBISe:Sione0
- Number of disparity maps: 200 Argoverse Stereo
- Resolution: 1242x375
w 10M - Baseline: 0.54 m
S - Focal length: ~707 px
© 8M Argoverse Stereo:
@ - Number of disparity maps: 5,530
E &M - Resolution: 2464x2056
> - Baseline: 0.2986 m
- Focal length: ~3,757 px
4M
2M
0 J K

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Depth (m)

Willson et.al. Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting. NeurlPS 2021 (link) ArgoAl


https://www.argoverse.org/av1.html#stereo-link

KITTI 2015 (dbeBpanb 2023)

Evaluation ground truth |All pixels v | Evaluation area | All pixels v
Method Setting Code Di-bg D1-fg Di-all Density Runtime Environment ‘ Compare ‘

1 GANet+ADL 1.38% 2.40% 1.55% 100.00% 1.8s GPU @ 1.5 Ghz (Python) O

2 IGEV-Stereo 1.38% 2.67%  1.59% 100.00% 0.18s NVIDIA RTX 3090 (PyTorch) O

3 RCA-Stereo 1.40% 2.71% 1.62% 100.00% 0.40s 1 core ® 2.5 Ghz (Python) O

4 UPFNet 1.38% 2.85% | 1.62% 100.00 % 0.25% 1 core @ 2.5 Ghz (C/C++) O

5 ERNet 1.36% 3.09% 1.65% 100.00 % 0.2s 1 core @ 2.5 Ghz (Python) O
ERROR: Wrong syntax in BIBTEX file.

6 M-FUSE =& code  1.40% 2.91% 1.65% 100.00% 135 GPU O
L. Mehl, A Jahedi, J. Schmalfuss and A. Bruhn: M-FUSE: Multi-frame Fusion for Scene Flow Estimation. Proc. Winter Conference on Applications of Computer Vision (WACY) 2023.

7 SF2SE3 I:"_:I code 1.40% 2.91% 1.65% 100.00% 2.7 GPU @ >3.5 Ghz (Python) O
L. Sommer, P. Schroppel and T. Brox: SF25E3; Clustering Scene Flow into SE (3)-Motions via Proposal and Selection. DAGM German Conference on Pattern Recognition 2022,

8 LEAStereo code 1.40% 2.91%  1.65% 100.00% 0.30s GPU @ 2.5 Ghz (Python) O
X. Cheng, Y. Zhong, M. Harandi, Y. Da:, X, Chang, H. L1, T. Drummeond and Z. Ge; Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020,

9 ACVNet code 1.37% 3.07% 1.65% 100.00% 0.2s NVIDIA RTX 3090 (PyTorch) 0
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Velume for Accurate and Efficient Stereo Matching. CVPR 2022,

10 CGF-ACV 1.31% 3.37% 1.65% 100.00% 0.25s 1 core @ 2.5 Ghz {Python) O

1 DCANet 1.42% 2.91% 1.66% 100.00% 0.18s 3090TI GPU O

12 PCWHet code 1.37% 3.16% 1.67% 100.00% 0.44¢ 1 core ® 2.5 Ghz (C/C++) O
Z. Shen, Y. Dat, X. Song, Z. Rao, D. ZThou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Visten(ECCY) 2022

13 LaC+GANet code 1.44% 2.83% 1.67% 100.00% 18s GPU @ 2.5 Ghz (Python) 0
B. Liu, H, Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Sterec Matching Networks. Proceedings of the ARAl Conference on Artificial Intelligence 2022.

14 GweNet-DCA 1.43% 2.91%  1.68% 100.00% 0.24s GPU @ 2.5 Ghz (Python) O

15 GwcNet=ADL 1.42% 3.01% 1.68% 100.00% 0.32s GPU @ 1.5 Ghz (Python) O

16 CREStereo code 1.45% 2.86% 1.69% 100.00% 0.41s GPU @ »3.5 Ghz (Python) 0

J. L1, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and 5. Liu: Practical Stereo Matching via Cazcaded Recurrent Network with Adaptive Correlation. 2022,
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Pestome BUHOKYNAPHOro cTepeo &>

« BuHOKynsipHOEe cTepeo pa3dbmBaeTcsa Ha 3 LWara — pekTudukauus,
CTepeoconocTaBrneHne n TpMaHrynsauus

« KnoyeBblie ngen gns cTepeocornocTaBJiIEHUA.

« JlokanbHOe conocTasneHue (4ns KaXxgoro nukcena He3aBMcuUMO)

« [nobanbHoe (ana BCcex NUKcernos cpasy)

* [lonyrnobansHoe (HanpumMep, Ans KaXaoro He3aBUCUMO, HO NOYTH
No BCEMY N30D0paeHuto)

* [lepecermeHTayms (ycnosue CBA3aHHOCTU B BU3YyarbHOM
CErMmeHTe)

HenpoceTn no3BonaroT peLuaTb rnobdanbHo, C UCNONb30BaHMEM COSt
volume

« £BHasA orpaHNYeHHOCTb AaTaceToB Anst 0byyeHuns



OueHka KapT rnyouHbl



3agada OLEHKMN rmyounHbl

Single View Depth Estimation (SVDE)

Raw depth from RGB Image Result

Goddard et. al. Digging into Self- depth sensor
Supervised Monocular Depth
Prediction. ICCV2019



JlazepHble ckaHepbl

Scanner positions




Kamepa co CTpYKTYpHOW NOACBETKOW

iIIuminatign camera image

projector camera
CTpyKTypHas IIOJICBETKA - 3D ckanep nieHou B 1 ronoBou
TEKCTYPUPYEM JIFOOYIO OTHOTOHHYIO rpant POOU, na u paboyas
ITOBEPXHOCTh YKE CETOIHS rITyOHHA OrpaHUYCHa

https://wiki.dfrobot.com/brief analysis of camera principles



https://wiki.dfrobot.com/brief_analysis_of_camera_principles

Microsoft Kinect (2009-2023)

Texuomorus koMmanuu PrimeSense, auieH3upoBaHHAS
Microsoft n peanm3oanHas B kamepe Kinect for Xbox 360
("Project Natal")

Kinect for Xbox One &
Kinect for Windows - Time
of Flight kameps1

"VMHaa" cTpyKTypHas MOJCBETKA B BUE
Habopa MATEH 110 XUTPOMY I1a0I0HY.
dopMa MsITHA TaKKE aHATIU3UPYETCS

U1 OLICHKH TITYyOWHBI U HOpMaJIeH.


https://en.wikipedia.org/wiki/PrimeSense
https://en.wikipedia.org/wiki/Kinect

Apple n 3D kamepebl

LiDAR Scanner

Face ID

* Apple mpuobGpena PrimeSense B 2013 Direct Time-of-Flight
roxy A

* B 2020 rogy o6wssBuna Beinyck Ipad Pro
¢ "unnoBanmonHeM" LIDAR Scanner

(C TexHOMOTHAMU SONY) Fs::a::::::ﬂ =3
L =
* 576 ToukH B 10JIE€ 3pEHHUSI, B KOTOPBIX G g povo e (o ]

u3MepseTcsa NiyOruHa
64 azepHBIX AMOAA, C TOMOIIBIO

audpaKImOHHON pemeéTKu X9

H3mepeHue BpemMeHu
BO3Bpara OTPaKEHHOTO JIy4a

* Depth Completion - uaTerpamnms Bcex

JOTAHHBIX IJI OLICHKHU PJIy6I/IHBI
https://4sense.medium.com/apple-lidar-demystified-spad-vcsel-and-fusion-aa9c¢3519d4ch



https://4sense.medium.com/apple-lidar-demystified-spad-vcsel-and-fusion-aa9c3519d4cb

dToF n npumeHeHne KapT rnyouHbl

PaspexeHHasi kapTa rnyouHbl,
HanomMmunHatwowaa LIDAR

IPdeKT HOKE B HOYHOM peEXMME




[TpMmeHeHne ana pekoHCTPYKLU MK
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cemaHTu4eckasa cermenTauus anst 1500 kagpos

120000 ncxogHbixX Kaapos
KapTa raybunbl ¢ Kinect

Silberman et al. Indoor Segmentation and Support Inference from RGBD
Images. ECCV 2012



5000 kagpos 20000 kapgpos

50 ropooB, HECKONBKO BPEMEH roAa
30 knaccoB 0OBEKTOB

cTepeonapbl

GPS-koopaunHaThl

OflOMEeTpPUS

Cordts et al. The cityscapes dataset for semantic urban scene

understanding. CVPR 2016




Matterport 3D Dataset

3 combined structured light

Sensors Final building-
. ) scale

Scans are aligned using reconstruction

structure from motion

software

11k panoramic views from
194k RGB-D images of
90 building-scale scenes
RGB, depth, normals,
surface reconstructions, Matterport 3D
camera poses, 2D and 3D e
semantic segmentations

Raw point clouds: color, diffuse shading,
normals



OrpaHnyeHusa Ha npumepe Matterport 3D

3epkana, orpaHn4yeHHas rnyouHa (Ha ynuue), TOHKMe getanu u T.4.

RGB
input depth 4
0 g = input depth 8
0
-3
100 ?
[ 5 100 .
200
1 — 200 4
0 »
0 100 200 300 0
) I4 ; input mask 0
5 50 8
100 100 - 100 &
-2
150 A1
4
200
1 200 200 5
0 1020 X0y 250 0 100 200 300




ARKIt Scenes (2021)

Dataset Size 3DOD Labels HR #Frames HR LR
MPI-Sintel 35 Scenes - 1,628 1024 x436 -

A 432x381 to
Middleburry - - 34 2964 x2000
NYU v2 464 Scans 1,449 frames - -
SUN RGB-D 10K frames 10k frames - -
SceneNN 100 Scans 100 scans - -
ScanNet 707 Venues 1,513 scans - -

1,513 Scans '
Matterport3D 2,056 rooms 2056 scans - -
. 1,661 venues 2 1920x 1440 256x192

ARKitScenes 5,047 Scans 5047 scans 450K Laser Scanner ARKit Depth

» CkanupoBanue komHat Faro Focus S70 co mrarusa u Ipad
Pro 2020 B hand-held pexume

* benumapku 3D object detection & depth map upsampling.

https://qithub.com/apple/ARKitScenes



https://github.com/apple/ARKitScenes

OueHka ka4yecTBa

D(p) Dy(p)
Dy(p)” D(p)

O-Metric  max(

) < t

0

100 200

300

100 200

300 0

raw depth ground truth
5<1.05 | 5<1.10 |d<1.25 |5<1.25"2 | 5<1.25"3
Raw depth vs GT 0.895 | 0.912 | 0.929 |0.944 |0.953
depth

100

200

error

300



OueHka KapT rmyouHbl N0 N300paXXeHuto



OaHa n3 nepsbix padboT no SVDE

Coarse

1
256 384 384 » ¥

25¢ 4096
> ~ I s R b [
11x11 conv 5x5 conv :I :I = é >

3x3 conv | 3x3 conv | 3x3 conv full full

4 stride 2x2 pool
2x2 pool

Coarse 1 Coarse 2  Coarse 3 Coarse 4 Coarse 5 Coarse 6 Coarse 7

64/

— —_— —_— i
9x9 conv Concatenate 5x5 conv 5x5 conv
2 stride

2x2 pool Fine 1 Fine 3

Coarse
Layer input 1 234 5 6 7 1,234
Size (NYUDepth) | 304x228 | 37x27 18x13  8x6  1Ix1  74x55 | 74x55
Size (KITTI) 576x172 | 71x20 35x9 17x4 1x1  142x27 | 142x27
Ratio to input /1 /8 /16 /32 - /4 /4

Eigen et al. Depth Map Prediction from a Single Image using a
Multi-Scale Deep Network. NIPS 2014



CoBMecCTHas oLeHKa

nut

Scale 1
/
conv/pool full conn.- :
=upsample
-
P Scale 2
>
concat [ —
conv/pool < convolutions
i upsample

Scale 3

concat - | .
conv/pool convolutions

Eigen et al. Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture. ICCV 2015



Oby4yeHne mogenen No ctepeonaHHbIM

1 Left Image D Predicted Inverse Depth
L,(x) cep D(x) = fB/d(x)

M
3 - 11(X)||

Inverse Warping :
Reconstruction Error - [ (x) = L(x+D(x)) :

Warp Image Right Image 1(x)
L (x)

Garg et al. Unsupervised CNN for Single View Depth Estimation:
Geometry to the Rescue. ECCV 2016



OyHKUMA NOTEPb

PyHKUMSA NOTEPD:

E = Erec ‘|‘YEsnlooth

ESTTIODth — Z HVD (x')”z

Evee = ) ILu(x) = L()|* = 3 [lalx + D(x)) = ()|



J[laTaceTbl

Dense/  Depth

Dataset sparse type #Samples
DIML Indoor [!+4] indoor absolute 220K
MegaDepth [ | 5] general UTS 130K
ReDWeb [-+1] general ~ UTSS 3600
3D Movies [ /] general UTSS S00K
Sintel [ ] general  absolute 1064

NYUv2 Raw [22 indoor  absolute 407K
TUM-RGBD [ 4] indoor absolute SOK
DIW [4] general  ordinal 496K

Table 1: Overview of the datasets used in our experiments.
Top: training datasets, bottom: test datasets.



UTS n UTSS

d* 1 = C;d1 « Up-to-Scale (UTS), rae d — ouLeH&HHas rnybuHa

d* 1 = C1(D + Cy) » Up-to-Shift-and-Scale (UTSS), rae D - aucnaputer

[:]\,[.zjﬂu,,we = HUTS»CSI T [/SSI » l'oe | =1, ecnu ectb UTS unu
abconoTHble JaHHble



CpaBHeHNE pe3ynbTaToB

Input ' Lietal [4 Li & Snavely [5 MiDas [6 QOurs, MN-LRN _Ours, B5-LRN

Figure 5: Qualitative comparison of depth maps produced by our models and existing competitors. Images are taken from
the DIW dataset and were not seen durine trainino.



Busyanmnsauus

Source
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icnonb3oBaHWe reHepaTMBHbLIX MOAENEN

€

Latent
»{concat Diffusion
U-Net
t 2@ f

t
Latent Add
Encoder Noise
Sample J

[ooby4eHne mogenu BbiBOA

Denoising Diffusion
Training Objective

https://marigoldmonodepth.github.io/



https://marigoldmonodepth.github.io/

Depth Anything

, Depth Anything V1 ’ E"‘D"éf)tﬁ Anythi

Bl

https://depth-anything-v2.qgithub.io/



https://depth-anything-v2.github.io/

[Tpobnembl B gataceTax

(a) Label noise in transparent object (depth sensor) (b) Label noise in repetitive pattern (stereo matching)
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(c) Label noise in dynamic objects (SfM) (d) Caused errors in model prediction

Figure 3: Various noise in “GT” depth labels (a: NYU-D [70], b: HRWSI [83], c: MegaDepth [37])
and prediction errors in correspondingly trained models (d). Black regions are ignored during training.

https://depth-anything-v2.github.io/



https://depth-anything-v2.github.io/

CUHTEeTn4YecKkne gaHHbIe

(c) Predictions of models trained on labeled real images (middle) and synthetic images (right)

Figure 4: Depth labels of real images (a) and synthetic images (b), and the corresponding model
predictions (c). The labels of synthetic images are highly precise, and so are their trained models.

https://depth-anything-v2.qgithub.io/



https://depth-anything-v2.github.io/

DepthAnything V2

purely synthetic images unlabeled real images pseudo-labeled real images

highly precise highly diverse & precise
largest teacher
dls“trlbzmon sluft fine-grained details
limited diversity real-world distribution
n E‘
l._. ..~! . o T
i >

pseudo labels

largest teacher

Figure 7: Depth Anything V2. We first train the most capable teacher on precise synthetic images.
Then, to mitigate the distribution shift and limited diversity of synthetic data, we annotate unlabeled
real images with the teacher. Finally, we train student models on high-quality pseudo-labeled images.

https://depth-anything-v2.qgithub.io/



https://depth-anything-v2.github.io/

MeToabl pelueHnsa 3agadm depth completion



[Tpumep pelwleHna Depth Completion

Sensor Depth

Output Depth

) Boundary Detection
Color Image GuUncary eeelio Occlusion Boundary

Yinda Zhang, Thomas Funkhouser. Deep Depth Completion of a Single RGB-D
Image. CVPR 2018



[peabigywimnm SOTA meTon
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h ys ] | 4 ) I | | ‘ !
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| |
RGB [[’] Dilated Self-Attention Blocks I
. . ] Sobel Edge Detection |
---------- * Skip Connection | '
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Huang et. al., Indoor depth completion with boundary consistency and self-attention. 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), Oct 2019.
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M.Tan, Q.Le. EfficientNet:Rethinking model
scaling for convolutional neural networks.
ICML2019

Decoder

V.Nekrasov, C.Shen, I.Reid. Light-Weight RefineNet for Real-
Time Semantic Segmentation. BMVC2018




MoTuBupyowasa pabora

. T | »
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J. Tang. et. al. Learning Guided Convolutional Network for Depth
Completion. ArXiv 2019
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. Macka Hannuma & NpUsHaKK Samstng Al Center - Moscow

(a) (b) (c) (d) (e) () (g)
Figure 2: Mask features. (a) input mask , (b)-(d) high resolution features (% X %), (e)-(1)
mid resolution features (% X %) Large values are highlighted. Features of filled regions
tend to be small and constant while for unfilled areas features might take values in a wide

range. One can also notice large activation values marking the boundaries of objects that
might also be helpful for depth inpainting.



SR
OyHKUMA NOoTepPb N

* BbluncneHme notepb B riorapnPmMmMyeckon Lkane, crnenys npaktmke oueHKu
rnyouHel no RGB n3obpaxeHnsam

L(d;,d;) logd; — d;
"%

e d; - gt depth value
e d;- predicted depth in log scale

* Hanpamyo ontuMnampyem O-MeTpUKn
 BegeTt Kk noBbILLEHWNIO TOYHOCTU



CpaBHeHune Ha Matterport3D

RGB Sensor GT Gansbeke et al. Liet al. Huang et al. Ours

Figure 5: Qualitative comparison with Gansbeke er al. [1], Li et al. [20], Huang er al. [15] on Matterport3D test set. We
train [ ] and [20] on Matterport3D using the official code of the corresponding approaches, and results for [| 5] are based
on the official pretrained model. Rows 2 and 4 represent zoomed-in fragments from rows 1 and 3, respectively. All images
are created using color maps with the same value limits. Our model generates the completed depth map with very sharp
boundaries.



YucneHHble oUueHKN

RMSE| | MAE| | d1057 | 91007 | 91957 | 012527 | 0192537 | SSIM?T
Huang eral. [ 1 7] 1.092 0.342 0.661 0.750 0.850 0911 0.936 0.799
Zhang et al. [1+] 1.316 0.461 0.657 0.708 0.781 0.851 0.888 0.762
Gansbeke er al. [ ] 1.161 0.395 0.542 0.657 0.799 0.887 0.927 0.700
Lietal [20] 1.054 0.397 0.508 0.631 0.775 0.874 0.920 0.700
Gansbeke er al. [ ] (ours) 1.264 0.484 0.675 0.741 0.826 0.888 0.920 0.780
Lietal [20] (ours) 1.134 0.426 0.649 0.729 0.0.834 0.899 0.928 0.774
DM-LRN (ours) 0.961 0.285 0.726 0.813 0.890 0.933 0.949 0.844
LRN (ours) 1.028 0.299 0.719 0.805 0.890 0.932 0.950 0.843
LRN + mask (ours) 1.054 0.298 0.737 0.815 0.889 0.933 0.950 0.844

Table 1: Matterport3D TEST. We use the results for Huang er al. [ 5] and Zhang et al. [1~] reported in [ | 5]. Gansbeke et
al. [42] and Li er al. [20] are trained on Matterport3D using their official implementations. Models labeled as “ours™ are
trained using our proposed pipeline. The two bottom rows represent models without the decoder modulation branch, with
and without the mask on the input. RMSE and MAE are measured in meters.



SMMNNIMPOBaHME AaHHbIX Ansl 00y4YeHus

(b) Initial real sensor (d) Quickshift [+ 3] (f) Uniform [27]



BusyanbHoe cpaBHeHne Ha NYUv2

Gansbeke et al.
[42]

Figure 7: Qualitative comparison with Gansbeke er al. [12]. Li ef al. [20]. Huang et al. [15] on NYUv2 [25] test set. All
models are trained using our semi-dense sampling strategy. The third and fourth raws present a hard example.

Lietal |20] Huang et al. [17]
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semi-dense sparse (500 points)
RMSE | | rel] |d125T | 012527 | 01053 T | RMSE | | rel] | d1957T | 010952 T | 01953 T
Huangetal.[15] 0.271 0.016 | 98.1 99.1 99.4 - B - B -
Gansbeke er al. [12] | 0.260 | 0.017 | 97.9 99.3 99.7 0.344 | 0.042 | 96.1 98.5 99.5
Lietal [2V] 0.190 | 0.018 | 98.8 99.7 99.9 0.272 ] 0.034 | 973 99.2 99.7
DM-LRN (ours) 0.205 | 0.014 | 98.8 99.6 99.9 0.263 | 0.035 | 97.5 99.3 99.8

Table 3: NYUv2 TEST. Quantitative comparison of training setups for different models. Semi-dense sampling preserves more
accurate information that leads to better results. Although our approach is not intended to be applied to sparse depth sensors,
it demonstrates strong results in the sparse training setting in indoor environments. We do not use any densification scheme
for target depth reconstruction. Pseudo-sensor data is directly sampled from real sensor data.
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« CeHcopbl rnMyouHbI NO3BOSIAKT OLLEHUTb rMyouHy ro 1
pakypcy, 6e3 ctepeo. Ho MMeloT orpaHn4yeHus

* C nomoubto DL Mbl MOXeM oueHmnBaTb rnmyounHy 6e3
CEHCOPOB N 6e3 CTepeon, HO NOKa He TakK XOpOLLO

« CeHcopbl rMyObuMHbI NO3BONAIOT MNOMTYYUTb MHOIO 06y4atoLLmx
OaHHbIX, HO HenaeanbHbIX

« CTepeo AgaHHble pa3HOObpa3Hbl, HO AN HUX HET 3TarnOHHbIX
peLleHnmn

* Bce obwme HapaboTkn moaenen nrnoTHOU pasMeTKu
N300paKeHnn nepeTekaroT B 3aJa4M OLUEHKN IyOUHBbI
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