
Basic image processing

Vlad Shakhuro

25 September 2025

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

2

What is image processing?
Tasks and methods where input and output are images

𝑌 = 𝑓(𝑋), 𝑋 ∈ ℝ𝐻in×𝑊in×𝐶in

𝑌 ∈ ℝ𝐻out×𝑊out×𝐶out

Goals:
1. Improve image for human perception
2. Improve image for automatic recognition
3. Extracting features for further analysis
4. Conversion for technical needs
5. Entertainment (special effects)

3

Camera imaging pipeline

4

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

5

Image histogram

Image values don’t fully use available luminance range or concentrate
around certain values

6

Image histogram

Image values don’t fully use available luminance range or concentrate
around certain values

6

Autocontrast

Point operator: pixel output value is defined only by it’s own value, i.e. all
pixels are processed independently. Simplest case is linear correction:

𝑓(𝑥) = (𝑥 − 𝑥min)
255

𝑥max − 𝑥min

7

Stable autocontrast

To make autocontrast more stable to noise, drop 5% of min and max
values to compute 𝑥min and 𝑥max

How make contrast correction for color images?

8

Nonlinear contrast correction

𝑓(𝑥) = 𝑐 ⋅ 𝑥𝛾

9

Histogram equalization

→

𝑓(𝑥) = round(
𝑐𝑑𝑓(𝑥) − 𝑐𝑑𝑓min

#𝑝𝑖𝑥 − 1
⋅ 255)

10

Histogram equalization example

11

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

12

Color correction

13

Correcting with neutral card

Take a photo of white or gray card
under desired illumination

Multiply RGB values by 1/𝑟𝑤, 1/𝑔𝑤
and 1/𝑏𝑤

What drawbacks does this method
has?

14

Color checker

Color template for professional use
(filmmaking, high-quality
photography)

Possible to use more complex
nonlinear models, e.g. polynomial
with 24 degrees of freedom

Why use more complex models?

15

Gray world

Gray world assumption: average per-channel value should be equal for
all three channels. Compute multipliers 𝑟𝑤, 𝑔𝑤, 𝑏𝑤 that correct image
according to this assumption

𝐴𝑣𝑔 =
𝑅 + 𝐺̅ + 𝐵

3

𝑟𝑤 =
𝑅

𝐴𝑣𝑔
, 𝑔𝑤 =

𝐺̅
𝐴𝑣𝑔

, 𝑏𝑤 =
𝐵

𝐴𝑣𝑔

16

Gray world example

17

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

18

Noise

Gaussian noise:

𝐼[𝑖, 𝑗] = 𝐼true[𝑖, 𝑗] + 𝜀𝑖,𝑗
𝜀𝑖,𝑗 ∼ 𝒩(𝜇, 𝜎)

Data drop-out noise:
• Salt-and-pepper: random black

and white pixels
• Impulse noise: random white

pixels

19

Image averaging

What type of noise does averaging suppress?

20

Image convolution

21

Kernel examples

22

Kernel examples

22

Kernel examples

23

Kernel examples

23

Blurring image

24

Gaussian kernel

Filter radius 𝑟 is 3𝜎,
filter size is 2𝑟 + 1

𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−(𝑥+𝑦)2

2𝜎2

25

Sharpening
We know how to blur image. How can we sharpen image?

26

Sharpening
We know how to blur image. How can we sharpen image?

26

Sharpening

27

Impulse noise

Will gaussian filter help with salt-and-pepper noise?

28

Median filter

29

Median filter

29

Gaussian and median filter comparison

30

Linear filters and convolution
Spatial filter 𝑓 is called linear if two properties are fulfilled:

𝑓(𝐼1 + 𝐼2) = 𝑓(𝐼1) + 𝑓(𝐼2)
𝑓(𝑘𝐼) = 𝑘 ⋅ 𝑓(𝐼)

Filter 𝑓 is called invariant to shift if 𝑓(shift(𝐼)) = shift(𝑓(𝐼))

Any linear filter invariant to shift may be expressed as convolution with
some kernel

Is median filter linear? No

med([
1 1 1
1 1 2
2 2 2

] + [
0 0 0
0 1 0
0 0 0

]) ≠ med([
1 1 1
1 1 2
2 2 2

]) + med([
0 0 0
0 1 0
0 0 0

])

31

Linear filters and convolution
Spatial filter 𝑓 is called linear if two properties are fulfilled:

𝑓(𝐼1 + 𝐼2) = 𝑓(𝐼1) + 𝑓(𝐼2)
𝑓(𝑘𝐼) = 𝑘 ⋅ 𝑓(𝐼)

Filter 𝑓 is called invariant to shift if 𝑓(shift(𝐼)) = shift(𝑓(𝐼))

Any linear filter invariant to shift may be expressed as convolution with
some kernel

Is median filter linear?

No

med([
1 1 1
1 1 2
2 2 2

] + [
0 0 0
0 1 0
0 0 0

]) ≠ med([
1 1 1
1 1 2
2 2 2

]) + med([
0 0 0
0 1 0
0 0 0

])

31

Linear filters and convolution
Spatial filter 𝑓 is called linear if two properties are fulfilled:

𝑓(𝐼1 + 𝐼2) = 𝑓(𝐼1) + 𝑓(𝐼2)
𝑓(𝑘𝐼) = 𝑘 ⋅ 𝑓(𝐼)

Filter 𝑓 is called invariant to shift if 𝑓(shift(𝐼)) = shift(𝑓(𝐼))

Any linear filter invariant to shift may be expressed as convolution with
some kernel

Is median filter linear? No

med([
1 1 1
1 1 2
2 2 2

] + [
0 0 0
0 1 0
0 0 0

]) ≠ med([
1 1 1
1 1 2
2 2 2

]) + med([
0 0 0
0 1 0
0 0 0

])

31

Convolution properties
Commutativity:
𝐼 ∗ 𝐾 = 𝐾 ∗ 𝐼

Associativity:
(𝐼 ∗ 𝐾1) ∗ 𝐾2 = 𝐼 ∗ (𝐾1 ∗ 𝐾2)

Distributivity:
𝐼 ∗ (𝐾1 + 𝐾2) = (𝐼 ∗ 𝐾1) + (𝐼 ∗ 𝐾2)

Multiplying by scalar:
𝑎𝐼 ∗ 𝐾 = 𝐼 ∗ 𝑎𝐾 = 𝑎(𝐼 ∗ 𝐾)

Convolution with identity kernel:
𝐼 ∗ 𝐸 = 𝐼, 𝐸 = [… , 0, 0, 1, 0, 0,…]

32

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

33

Fast box filter

34

Fast box filter

𝑆[𝑥, 𝑦] =
𝑥
∑
𝑖=0

𝑦

∑
𝑗=0

𝐼[𝑖, 𝑗]

35

Fast box filter

𝑆𝑢𝑚(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝐴 + 𝐵 − 𝐶 − 𝐷
= 𝑆[𝑥2, 𝑦2] + 𝑆[𝑥1 − 1, 𝑦1 − 1] − 𝑆[𝑥1 − 1, 𝑦2] − 𝑆[𝑥2, 𝑦1 − 1]

35

Separable filter

Filter is separable if it can be factorized into two 1D convolutions:

𝐺𝜎 =
1

2𝜋𝜎2 𝑒
−𝑥2−𝑦2

2𝜎2 = (
1

√2𝜋𝜎
𝑒−

𝑥2
2𝜎2)(

1
√2𝜋𝜎

𝑒−
𝑦2

2𝜎2)

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements.
Filtering complexity:

2D kernel: 𝑁2𝐾2

separable kernel: 𝑁2𝐾

36

Approximating using a separable filter

Filter is separable ↔ kernel rank = 1

𝒦 = 𝑣ℎ𝑣ℎ𝑣ℎ𝑇.

Non-separable filter may be factorized using SVD

𝒦 = ∑
𝑖
𝜎𝑖𝑢𝑢𝑢𝑖𝑣𝑣𝑣

𝑇
𝑖

and approximated with a series of separable filters

𝒦1 = √𝜎1𝑢𝑢𝑢1 ⋅ √𝜎1𝑣𝑣𝑣
𝑇
1 , 𝒦2 = √𝜎2𝑢𝑢𝑢2 ⋅ √𝜎2𝑣𝑣𝑣

𝑇
2 ,…

37

Approximating gaussian filter with a box filter

Gaussian blur with parameter 𝜎 may be approximated using 𝑁 box filters
with width 𝜎√12/𝑁

In practice 𝑁 = 3 is enough. Partially-quadratic kernel approximates
gaussian blur with 3% error

see also approximation in SVG standard
38

https://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement

Fast median filter

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements:

quick sort 𝑁2𝐾2 log𝐾
partial sort 𝑁2𝐾2

• Huang et al. 1979: 𝑁2𝐾
• Perreault el al. 2007: 𝑁2

39

Fast median filter

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements:
quick sort 𝑁2𝐾2 log𝐾

partial sort 𝑁2𝐾2

• Huang et al. 1979: 𝑁2𝐾
• Perreault el al. 2007: 𝑁2

39

Fast median filter

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements:
quick sort 𝑁2𝐾2 log𝐾
partial sort 𝑁2𝐾2

• Huang et al. 1979: 𝑁2𝐾
• Perreault el al. 2007: 𝑁2

39

Fast median filter

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements:
quick sort 𝑁2𝐾2 log𝐾
partial sort 𝑁2𝐾2

• Huang et al. 1979: 𝑁2𝐾

• Perreault el al. 2007: 𝑁2

39

Fast median filter

Let’s filter an image with 𝑁 ×𝑁 pixels using a kernel with 𝐾 × 𝐾 elements:
quick sort 𝑁2𝐾2 log𝐾
partial sort 𝑁2𝐾2

• Huang et al. 1979: 𝑁2𝐾
• Perreault el al. 2007: 𝑁2

39

Fast median filter (linear time)

1

Median Filtering in Constant Time
Simon Perreault and Patrick Hébert, IEEE member

Abstract— The median filter is one of the basic building blocks in many
image processing situations. However, its use has long been hampered
by its algorithmic complexity of O(r) in the kernel radius. With the
trend toward larger images and proportionally larger filter kernels, the
need for a more efficient median filtering algorithm becomes pressing. In
this correspondence, a new, simple yet much faster algorithm exhibiting
O(1) runtime complexity is described and analyzed. It is compared
and benchmarked against previous algorithms. Extensions to higher-
dimensional or higher-precision data and an approximation to a circular
kernel are presented as well.

Index Terms— Median filters, image processing, algorithms, complexity
theory.

I. INTRODUCTION

THE median filter [1] is a canonical image processing operation,
best known for its salt and pepper noise removal aptitude. It is

also the foundation upon which more advanced image filters like un-
sharp masking, rank-order processing, and morphological operations
are built [2]. Higher-level applications include object segmentation,
recognition of speech and writing, and medical imaging. Figure 4
shows an example of its application on a high-resolution picture.

However, the usefulness of the median filter has long been limited
by the processing time it requires. Its nonlinearity and non sepa-
rability make it unsuited for common optimization techniques. A
brute-force approach simply builds a list of the pixel values in the
filter kernel and sorts them. The median is then the value situated at
the middle of the list. In the general case, this algorithm’s per-pixel
complexity is O(r2 log r), where r is the kernel radius. When the
number of possible pixel values is a constant, as is the case for 8-bit
images, one can use a bucket sort, which brings the complexity down
to O(r2). This is still unworkable for any but the smallest kernels.

The classic algorithm [3], used in virtually all publicly available
implementations, exhibits O(r) complexity (see Algorithm 1). It
makes use of a histogram for accumulating pixels in the kernel. Only
a part of it is modified when moving from one pixel to another. As
illustrated in Figure 1, 2r+ 1 additions and 2r+ 1 subtractions need
to be carried out for updating the histogram. Computing the median
from a histogram is done in constant time by summing the values
from one end and stopping when the sum reaches (2r + 1)2/2. For
8-bit images, a histogram is made of 256 bins and therefore 128
comparisons and 127 additions will be needed on average. Note that
any other rank-order statistic can be computed in the same way by
changing the stopping value.

Efforts were made to improve the complexity of the median filter
beyond linear. A complexity of O(log2 r) was attained by Gil et al.
[4] using a tree-based algorithm. In the same paper they claimed a
O(log r) lower bound for any 2-D median filter algorithm. Our work
is most similar to that of [5], where sorted lists were used instead of
histograms, which resulted in a O(r2) complexity and was relatively
slow. More recently, Weiss [6] developed a method whose runtime
is O(log r) using a hierarchy of histograms. In his approach, even
though complexity has been lowered, simplicity has been lost. We
strive for a simple and efficient algorithm, with applicability to both
CPU and custom hardware.

The authors are with the Computer Vision and Systems Lab, Univer-
sité Laval, Québec, Canada. G1K 7P4. Phone: (418) 656-2131 #4479.
Fax: (418) 656-3594. E-mail: {perreaul,hebert}@gel.ulaval.ca

Fig. 1: In Huang’s O(n) algorithm, 2r + 1 pixels must be added to
and subtracted from the kernel’s histogram when moving from one
pixel to the next. In this figure, r = 2.

Algorithm 1 Huang’s O(n) median filtering algorithm.
Input: Image X of size m× n, kernel radius r
Output: Image Y of the same size as X

Initialize kernel histogram H
for i = 1 to m do

for j = 1 to n do
for k = −r to r do

Remove Xi+k,j−r−1 from H
Add Xi+k,j+r to H

end for
Yi,j ← median(H)

end for
end for

In this correspondence we propose a simple O(1) median filtering
algorithm similar in spirit to Huang’s. We show a few straightforward
optimizations which enable it to become much faster than the classic
algorithm. We take the opportunity to examine why the Gil-Werman
lower bound of O(log r) does not seem to hold. Then we explore
extensions to the new filter, namely application to higher-precision or
higher-dimensional data as well as a circular kernel approximation.
Finally, timing results are shown, asserting the practicality of our
approach.

II. FROM O(r) TO O(1) COMPLEXITY

To best understand our approach, it is helpful to first point out
the inefficiency in Huang’s algorithm. Specifically, notice that no
information is retained between rows. Each pixel will need to be
added and removed to 2r+1 histograms over the course of processing
the whole image, which causes the O(r) complexity. Intuitively, we
can guess that we will need to accumulate each pixel at most a
constant number of times to obtain O(1) complexity. As we will see,
this becomes possible when information is retained between rows.

Let us introduce one property of histograms, that of distributivity
[6]. For disjoint regions A and B,

H(A ∪B) = H(A) +H(B).

Notice that summing histograms is a O(1) operation with respect
to the number of accumulated pixels. It depends only on the size
of the histogram, which is itself a function of the bit depth of the

Huang et al. Fast Two-Dimensional Median Filtering Algorithm. 1979

40

Fast median filter (constant time)2

(a) (b)

Fig. 2: The two steps of the proposed algorithm. (a) The column
histogram to the right is moved down one row by adding one pixel
and subtracting another. (b) The kernel histogram is updated by
adding the modified column histogram and subtracting the leftmost
one.

image. Having made this observation, we can move on to a new O(1)
algorithm.

The proposed algorithm maintains one histogram for each column
in the image. This set of histograms is preserved across rows for the
entirety of the process. Each column histogram accumulates 2r + 1
adjacent pixels and is initially centered on the first row of the image.
The kernel histogram is computed by summing 2r + 1 adjacent
column histograms. What we have done is break up the kernel
histogram into the union of its columns, each of which maintains
its own histogram. While filtering the image, all histograms can be
kept up to date in constant time with a two-step approach.

Consider the case of moving to the right from one pixel to the
next. The column histograms to the right of the kernel are yet to be
processed for the current row, so they are centered one row above.
The first step consists of updating the column histogram to the right
of the kernel by subtracting its topmost pixel and adding one new
pixel below it (Figure 2a). The effect of this is lowering the column
histogram by one row. This first step is clearly O(1) since only one
addition and one subtraction, independent of the filter radius, need
to be carried out.

The second step moves the kernel histogram, which is the sum of
2r+1 column histograms, one pixel to the right. This is accomplished
by subtracting its leftmost column histogram and adding the column
histogram lowered in the first step (Figure 2b). This second step is
also O(1). As stated earlier, adding, subtracting, and computing the
median of histograms comprise a number of operations depending
on the image bit depth, not on the filter radius.

The net effect is that the kernel histogram moves to the right while
the column histograms move downward. We visualize the kernel as a
zipper slider bringing down the zipper side represented by the column
histograms. Each pixel is visited only once and is added to only
a single histogram. The last step for each pixel is computing the
median. As stated earlier, this is O(1) thanks to the histogram.

All of the per-pixel operations (updating both the column and
kernel histograms as well as computing the median) are O(1). Now
we address the issue of initialization, which consists of accumulating
the first r rows in the column histograms and computing the kernel
histogram from the first r column histograms. This results in an O(r)
initialization. In addition, there is overhead when moving from one
row to another which accounts for another O(r) term. However, since
the O(r) initialization only occurs once per row, the cost per pixel is
insignificant for arbitrarily large images. In particular, the amortized
cost drops to O(1) per pixel when the dimensions of the image are
proportional to the kernel radius, or if the image is processed in tiles
of dimensions O(r). When the tile size is limited by the dimensions

Algorithm 2 The proposed O(1) median filtering algorithm.
Input: Image X of size m× n, kernel radius r
Output: Image Y of the same size

Initialize kernel histogram H and column histograms h1...n

for i = 1 to m do
for j = 1 to n do

Remove Xi−r−1,j+r from hj+r
Add Xi+r,j+r to hj+r
H ← H + hj+r − hj−r−1

Yi,j ← median(H)
end for

end for

of the image, the redundancy of information outside the image (e.g.
solid color, or repeated edge pixels) correspondingly simplifies the
initialization, allowing O(1) computation on any size image, for any
kernel radius.

To summarize, the operation rundown for an 8-bit grayscale pixel
is as follows:

• 1 addition for adding the new pixel to the column histogram to
the right of the kernel.

• 1 subtraction for removing the old pixel from that same column
histogram.

• 256 additions for adding the new column histogram to the kernel
histogram.

• 256 subtractions for subtracting the old column histogram from
the kernel histogram.

• 128 comparisons and 127 additions, on average, for finding the
median of the kernel histogram.

This may seem excessive. However, most of these operations are
naturally vectorizable, which lowers the time constant considerably.
More importantly, many optimizations can be applied to reduce the
number of operations. They are discussed in the next section.

III. IMPLEMENTATION NOTES

This section describes some optimizations that can be applied to
increase the efficiency of the proposed algorithm. They all depend
on the particular CPU architecture on which the filter is executed.
As such, their effect can vary greatly (even reducing the efficiency
in some cases) from one kind of processor to another. Note also that
optimizations of sections III-C and III-D are data-dependent.

A. Vectorization

Modern processors provide SIMD instructions that can be exploited
to speed up our algorithm. The operation rundown shows that most
of the time is spent in adding and subtracting histograms. This can
be sped up considerably with MMX, SSE2 or Altivec instruction
sets by processing multiple bins in parallel. To maximize the number
of histogram bins that we can add in one instruction, each bin is
represented with only 16 bits. Thus, the kernel size is limited to 216

pixels, which is acceptable for typical uses. This limit is not intrinsic
to our algorithm: it is only a means for optimization.

Another area where parallelism can be exploited is the reading
of pixels from the image and their accumulating in column his-
tograms. Instead of alternating between updating column and kernel
histograms, as described in Section II, we can process the column
histograms for a whole row of pixels first. Using SIMD instructions,
we can update multiple column histograms in parallel. We then
proceed with the kernel histogram as usual.

• 16 bits for histogram bins, use vector operations
• split image into vertical bands for better using cache by histograms
• maintain two types of histograms: 16 and 256 bins

Perreault, Hebert. Median Filtering in Constant Time. 2007
41

http://nomis80.org/ctmf.html

Fast median filter (constant time)2

(a) (b)

Fig. 2: The two steps of the proposed algorithm. (a) The column
histogram to the right is moved down one row by adding one pixel
and subtracting another. (b) The kernel histogram is updated by
adding the modified column histogram and subtracting the leftmost
one.

image. Having made this observation, we can move on to a new O(1)
algorithm.

The proposed algorithm maintains one histogram for each column
in the image. This set of histograms is preserved across rows for the
entirety of the process. Each column histogram accumulates 2r + 1
adjacent pixels and is initially centered on the first row of the image.
The kernel histogram is computed by summing 2r + 1 adjacent
column histograms. What we have done is break up the kernel
histogram into the union of its columns, each of which maintains
its own histogram. While filtering the image, all histograms can be
kept up to date in constant time with a two-step approach.

Consider the case of moving to the right from one pixel to the
next. The column histograms to the right of the kernel are yet to be
processed for the current row, so they are centered one row above.
The first step consists of updating the column histogram to the right
of the kernel by subtracting its topmost pixel and adding one new
pixel below it (Figure 2a). The effect of this is lowering the column
histogram by one row. This first step is clearly O(1) since only one
addition and one subtraction, independent of the filter radius, need
to be carried out.

The second step moves the kernel histogram, which is the sum of
2r+1 column histograms, one pixel to the right. This is accomplished
by subtracting its leftmost column histogram and adding the column
histogram lowered in the first step (Figure 2b). This second step is
also O(1). As stated earlier, adding, subtracting, and computing the
median of histograms comprise a number of operations depending
on the image bit depth, not on the filter radius.

The net effect is that the kernel histogram moves to the right while
the column histograms move downward. We visualize the kernel as a
zipper slider bringing down the zipper side represented by the column
histograms. Each pixel is visited only once and is added to only
a single histogram. The last step for each pixel is computing the
median. As stated earlier, this is O(1) thanks to the histogram.

All of the per-pixel operations (updating both the column and
kernel histograms as well as computing the median) are O(1). Now
we address the issue of initialization, which consists of accumulating
the first r rows in the column histograms and computing the kernel
histogram from the first r column histograms. This results in an O(r)
initialization. In addition, there is overhead when moving from one
row to another which accounts for another O(r) term. However, since
the O(r) initialization only occurs once per row, the cost per pixel is
insignificant for arbitrarily large images. In particular, the amortized
cost drops to O(1) per pixel when the dimensions of the image are
proportional to the kernel radius, or if the image is processed in tiles
of dimensions O(r). When the tile size is limited by the dimensions

Algorithm 2 The proposed O(1) median filtering algorithm.
Input: Image X of size m× n, kernel radius r
Output: Image Y of the same size

Initialize kernel histogram H and column histograms h1...n

for i = 1 to m do
for j = 1 to n do

Remove Xi−r−1,j+r from hj+r
Add Xi+r,j+r to hj+r
H ← H + hj+r − hj−r−1

Yi,j ← median(H)
end for

end for

of the image, the redundancy of information outside the image (e.g.
solid color, or repeated edge pixels) correspondingly simplifies the
initialization, allowing O(1) computation on any size image, for any
kernel radius.

To summarize, the operation rundown for an 8-bit grayscale pixel
is as follows:

• 1 addition for adding the new pixel to the column histogram to
the right of the kernel.

• 1 subtraction for removing the old pixel from that same column
histogram.

• 256 additions for adding the new column histogram to the kernel
histogram.

• 256 subtractions for subtracting the old column histogram from
the kernel histogram.

• 128 comparisons and 127 additions, on average, for finding the
median of the kernel histogram.

This may seem excessive. However, most of these operations are
naturally vectorizable, which lowers the time constant considerably.
More importantly, many optimizations can be applied to reduce the
number of operations. They are discussed in the next section.

III. IMPLEMENTATION NOTES

This section describes some optimizations that can be applied to
increase the efficiency of the proposed algorithm. They all depend
on the particular CPU architecture on which the filter is executed.
As such, their effect can vary greatly (even reducing the efficiency
in some cases) from one kind of processor to another. Note also that
optimizations of sections III-C and III-D are data-dependent.

A. Vectorization

Modern processors provide SIMD instructions that can be exploited
to speed up our algorithm. The operation rundown shows that most
of the time is spent in adding and subtracting histograms. This can
be sped up considerably with MMX, SSE2 or Altivec instruction
sets by processing multiple bins in parallel. To maximize the number
of histogram bins that we can add in one instruction, each bin is
represented with only 16 bits. Thus, the kernel size is limited to 216

pixels, which is acceptable for typical uses. This limit is not intrinsic
to our algorithm: it is only a means for optimization.

Another area where parallelism can be exploited is the reading
of pixels from the image and their accumulating in column his-
tograms. Instead of alternating between updating column and kernel
histograms, as described in Section II, we can process the column
histograms for a whole row of pixels first. Using SIMD instructions,
we can update multiple column histograms in parallel. We then
proceed with the kernel histogram as usual.

• 16 bits for histogram bins, use vector operations
• split image into vertical bands for better using cache by histograms
• maintain two types of histograms: 16 and 256 bins

Perreault, Hebert. Median Filtering in Constant Time. 2007
41

http://nomis80.org/ctmf.html

Outline

1. What is image processing?

2. Tonal correction

3. Color correction

4. Noise reduction, convolution operation

5. Fast filtering

6. Edge detection

42

What is depicted on the image?

43

Canny edge detection algorihm

1. Blur image with gaussian filter
2. Compute gradient magnitude and direction
3. Make non-maximum suppression to make boundaries thin
4. Track edges using hysteresis

44

Image gradient

Gradient vector:
∇𝑓 = [𝜕𝑓

𝜕𝑥 ,
𝜕𝑓
𝜕𝑦]

Gradient direction:
𝜃 = arctg (𝜕𝑓

𝜕𝑦/
𝜕𝑓
𝜕𝑥)

Gradient magnitude:

‖∇𝑓‖ = √(𝜕𝑓
𝜕𝑦)

2
+ (𝜕𝑓

𝜕𝑥)
2

We will use Sobel 3 × 3 filters for
computing gradient:

[
−1 −2 −1
0 0 0
1 2 1

] [
−1 0 1
−2 0 2
−1 0 1

]

45

Image gradient

46

Non-maximum suppression
Use either 3 × 3 max filter or look at the gradient and antigradient
neighbour pixels

47

Track weak edges with hysteresis

Use two thresholds 𝑡strong, 𝑡weak to divide into three categories: strong
edges, weak edges and noise. Discard noise. Keep week edges that are
connected to a strong edge

48

Track weak edges with hysteresis

49

Conclusion

We reviewed following topics:
• camera imaging pipeline
• tone and color correction
• linear filtering for simplest tasks: noise suppression, gradient

estimation, image sharpening
• median filter for suppressing impulse noise
• edge detection using Canny method

50

	What is image processing?
	Tonal correction
	Color correction
	Noise reduction, convolution operation
	Fast filtering
	Edge detection

