

CNN backbones

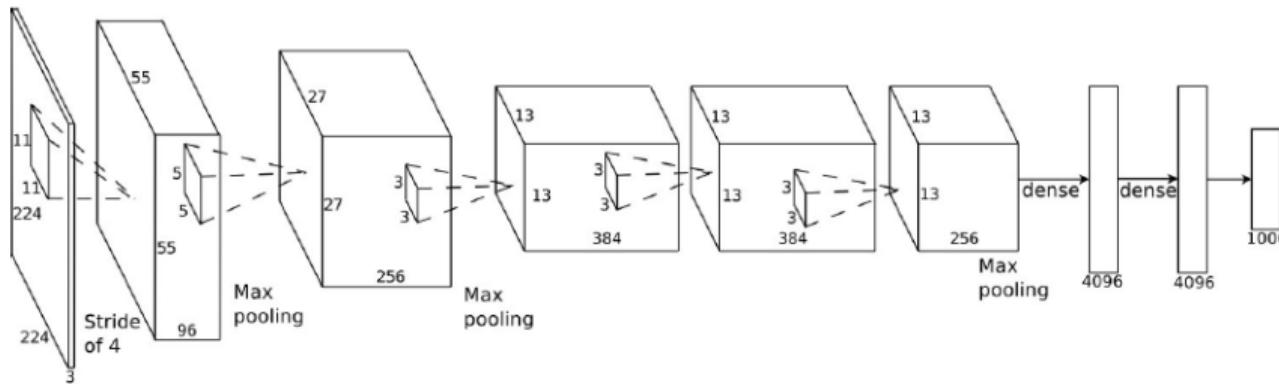
Vlad Shakhuro

16 October 2025

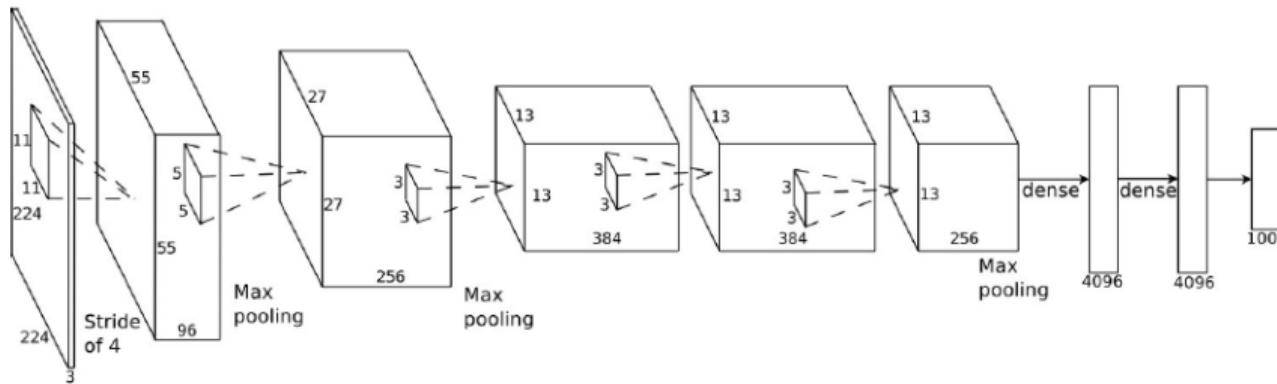
Outline

- I. CNN features and finetuning
- 2. AlexNet, VGG, Inception
- 3. ResNet and its' improvements
- 4. Mobile architectures
- 5. How good is ImageNet?

How can we analyze a neural network?



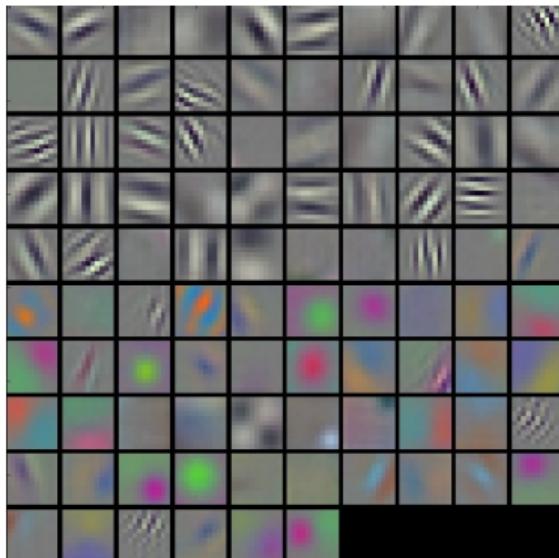
How can we analyze a neural network?



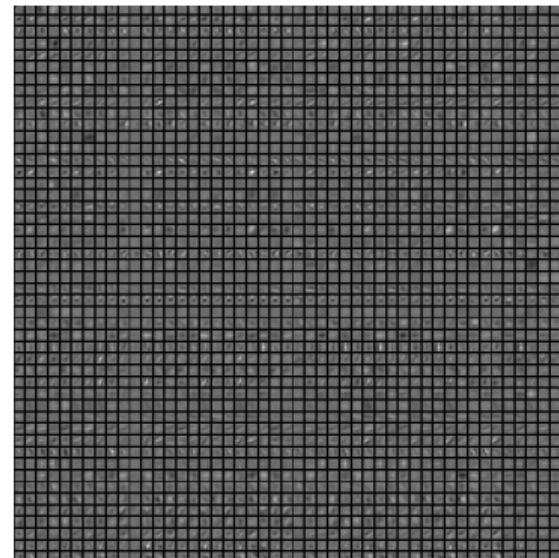
We can visualize:

- trained weights
- max activations of a particular neuron
- projection of a high-dimensional features space

Visualizing filters

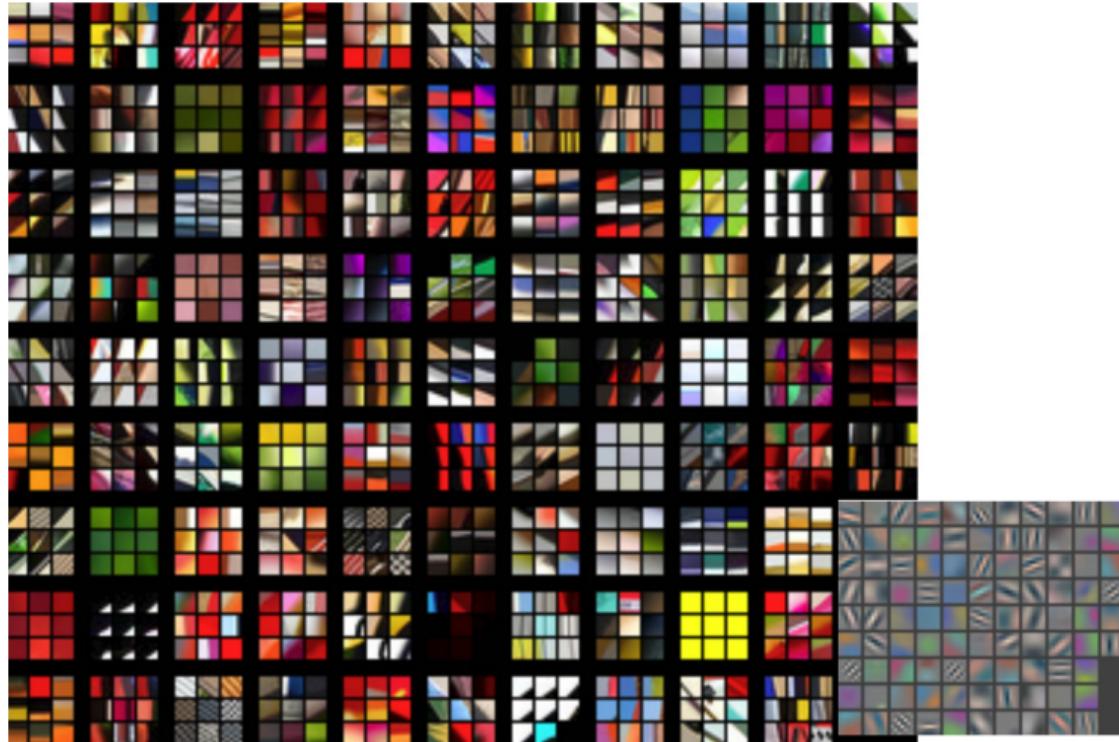


conv1

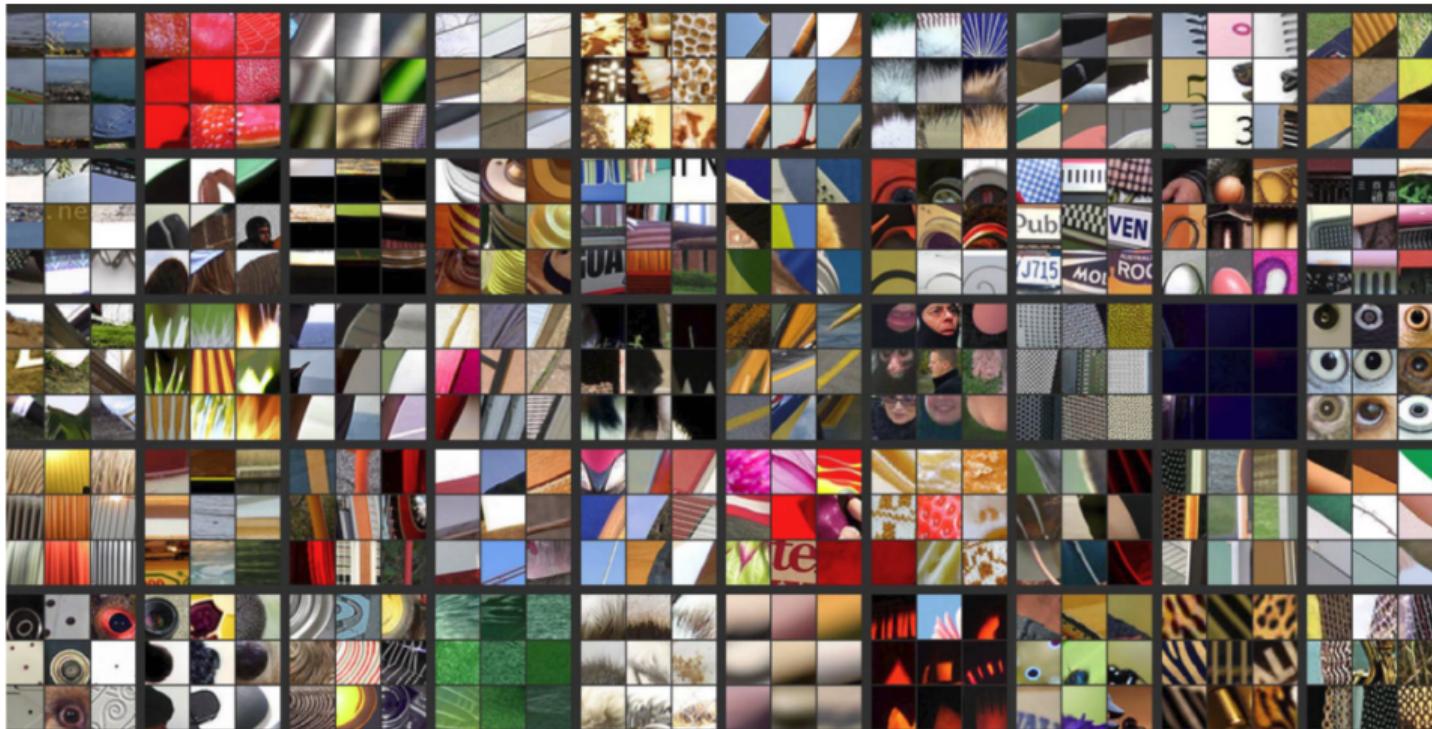


conv2

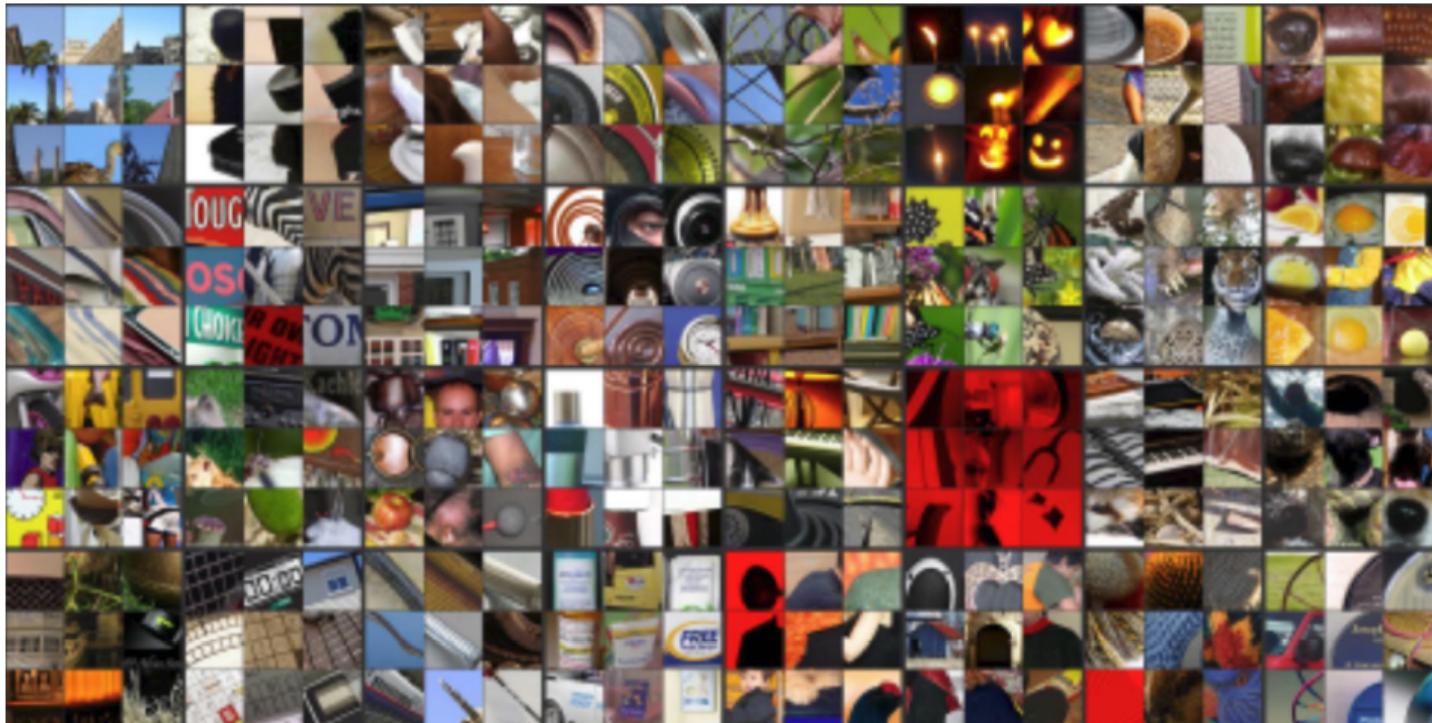
Visualizing image fragments



Visualizing image fragments



Visualizing image fragments

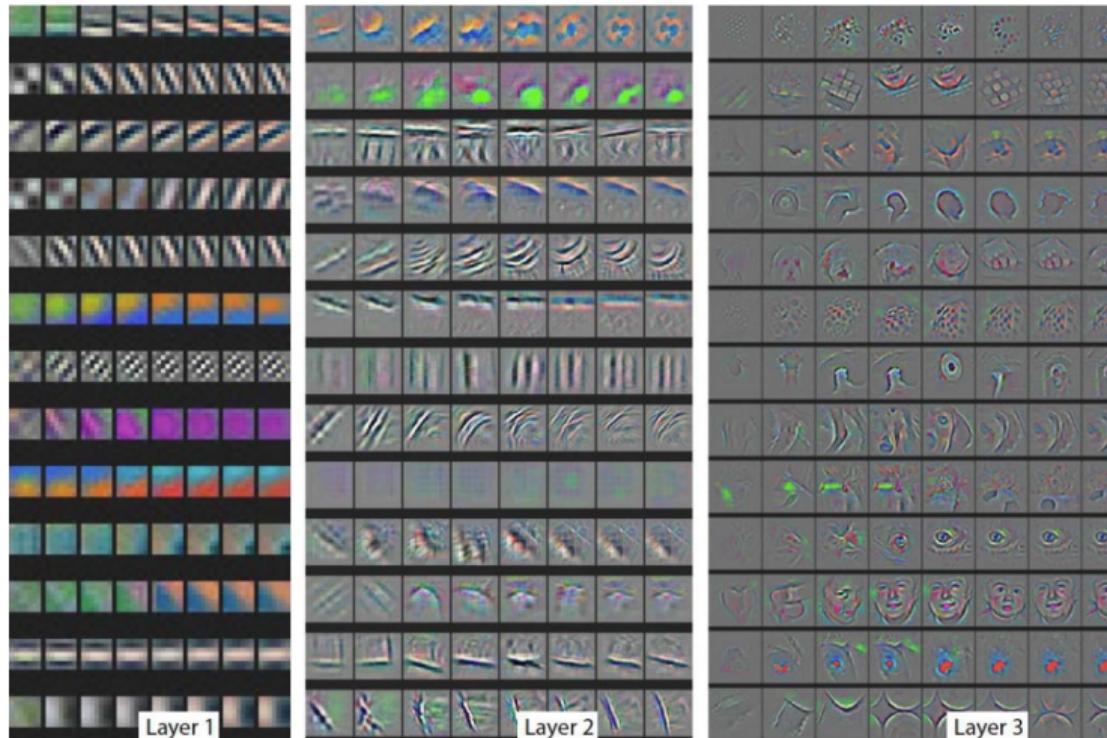


Visualizing image fragments



Visualizing image fragments

Visualizing filters with deconvnet during training



Visualizing feature space with t-SNE

Compute L_2 distance for 4096-dim vectors (fc6 or fc7 layers)

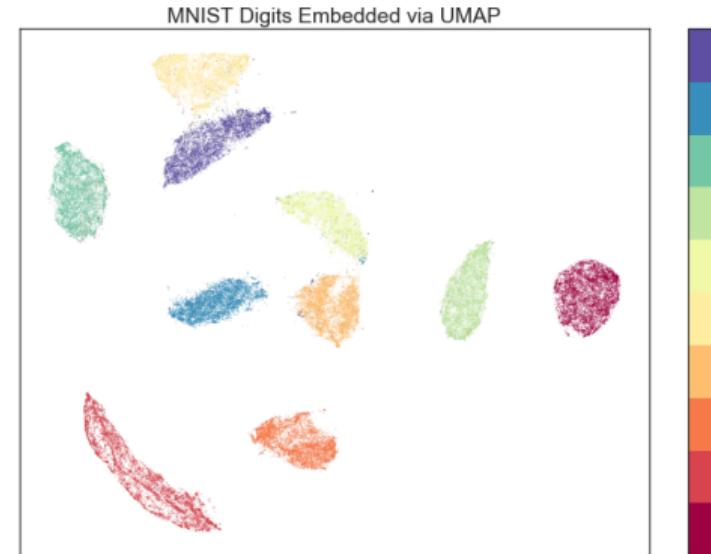
Project in 2-dim space, approximately preserving L_2 distances

Visualize images. See that semantically similar images are close to each other

Visualizing feature space with t-SNE

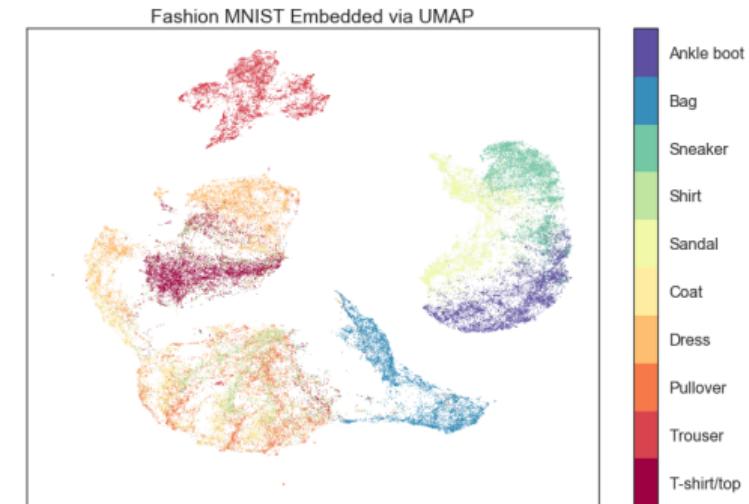
Visualizing feature space with UMAP

6	5	0	0	7	5	1	0	3	9
2	7	8	2	6	3	6	7	4	0
1	3	8	7	2	6	9	1	7	9
3	1	8	5	6	0	3	7	2	6
4	1	3	4	2	3	5	0	2	7
8	2	6	3	1	6	9	2	3	4
4	2	8	6	6	8	3	4	6	7
5	7	5	7	0	1	6	6	5	4
7	8	6	6	8	0	7	1	3	2
8	5	6	4	0	9	9	/	0	9



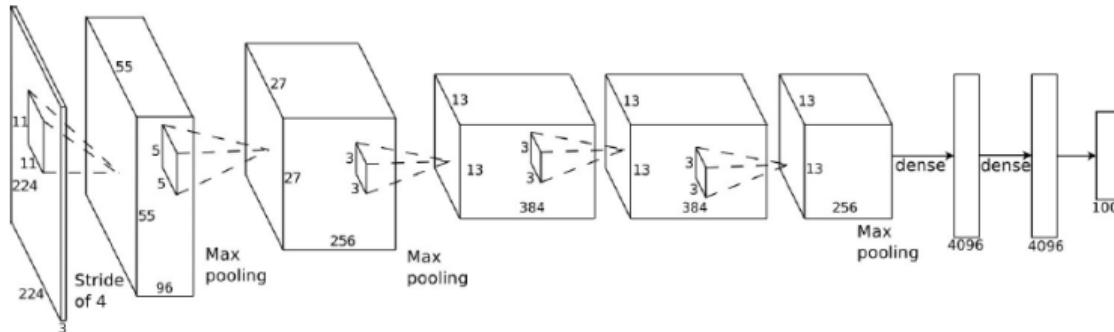
McInnes, Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426

Visualizing feature space with UMAP

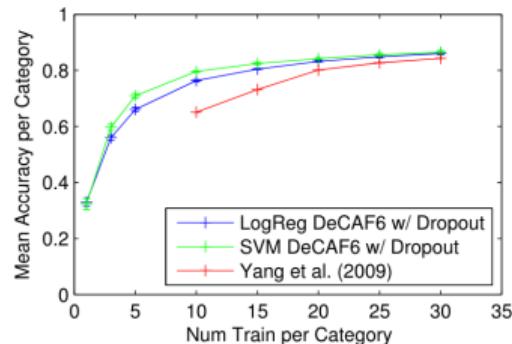


McInnes, Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv: 1802.03426

Reusing features from classification networks

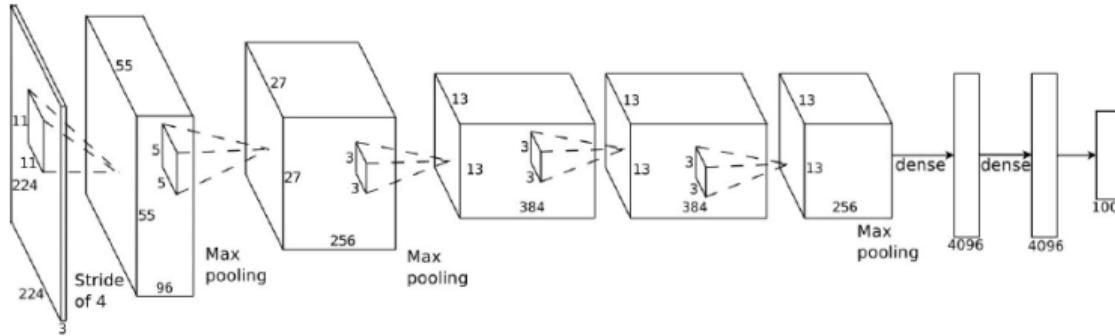


	DeCAF ₅	DeCAF ₆	DeCAF ₇
LogReg	63.29 \pm 6.6	84.30 \pm 1.6	84.87 \pm 0.6
LogReg with Dropout	-	86.08 \pm 0.8	85.68 \pm 0.6
SVM	77.12 \pm 1.1	84.77 \pm 1.2	83.24 \pm 1.2
SVM with Dropout	-	86.91 \pm 0.7	85.51 \pm 0.9
Yang et al. (2009)		84.3	
Jarrett et al. (2009)		65.5	



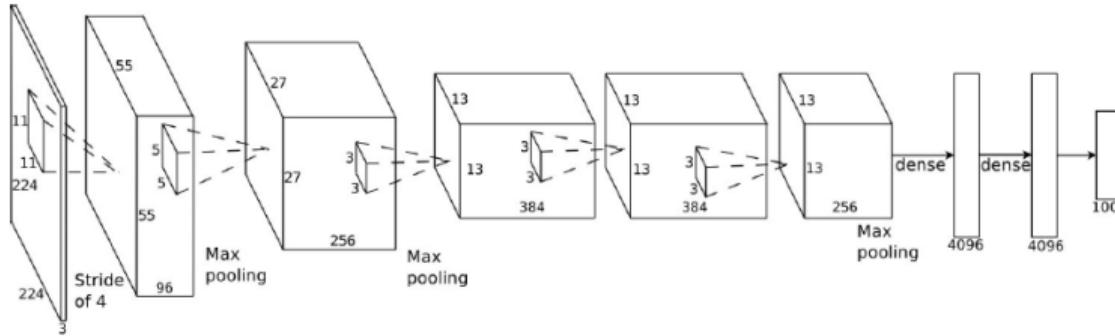
Donahue et al. Decaf: A deep convolutional activation feature for generic visual recognition. ICLR 2014

Finetuning a neural network



Replace last classifier layer and finetune the network with smaller learning rate. During finetuning we may use small training dataset

Finetuning a neural network



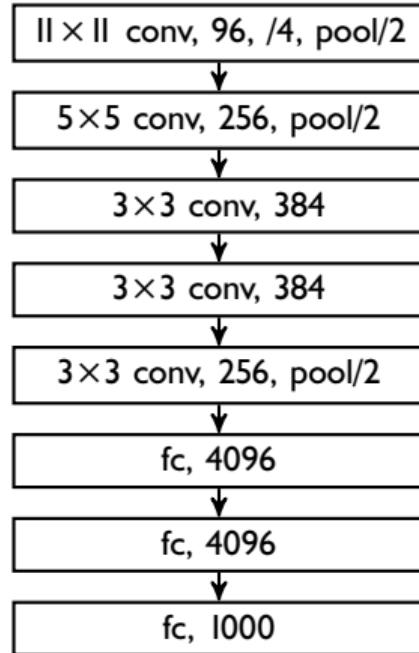
Replace last classifier layer and finetune the network with smaller learning rate. During finetuning we may use small training dataset

We now come to idea of **backbones**: baseline architectures that are pretrained on large datasets

Outline

- I. CNN features and finetuning
2. AlexNet, VGG, Inception
3. ResNet and its' improvements
4. Mobile architectures
5. How good is ImageNet?

AlexNet



Krizhevsky et al. Imagenet classification with deep convolutional neural networks. NIPS 2012

Applying AlexNet to different resolutions

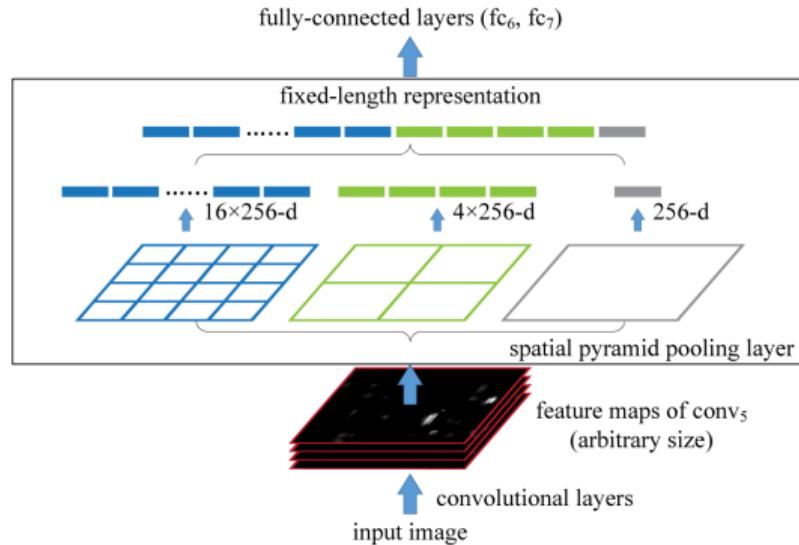
- Fixed resolution:

crop

warp

- Sample several random crops, average results
- Scan whole image with fixed size window, average scores

Spatial Pyramid Pooling



Single pooling layer across all features is called **average pooling**

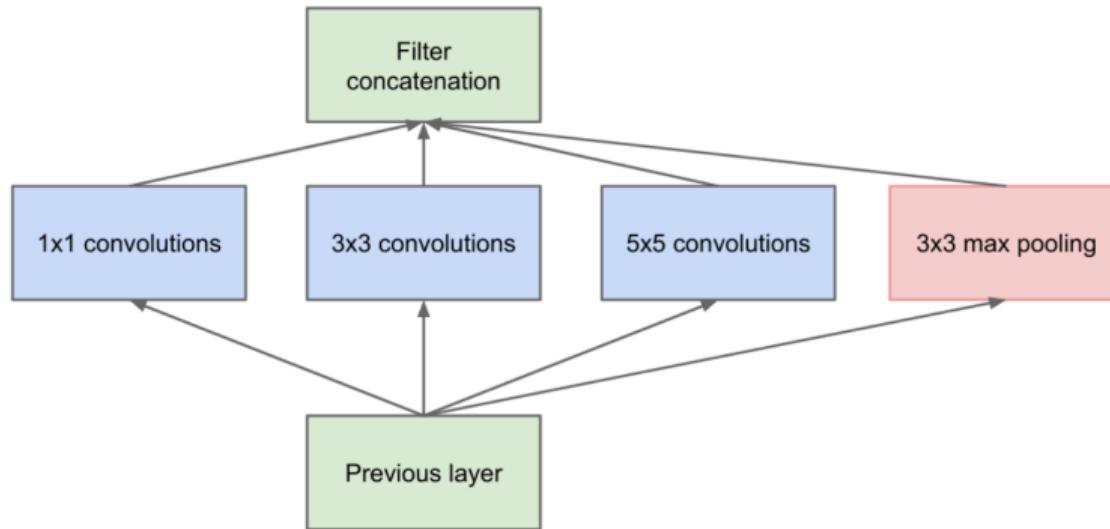
VGG

Key ideas:

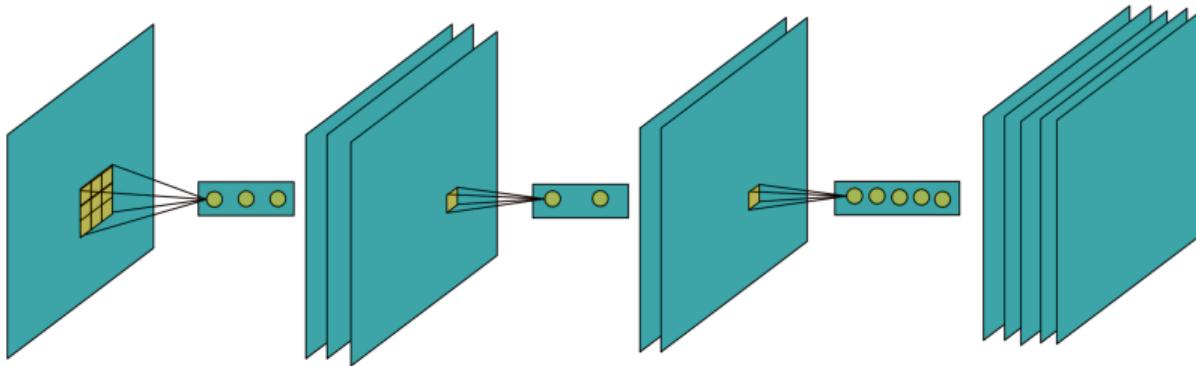
- Use only 3×3 convolutions
- Increase depth
- Use only pooling for decreasing resolution
- Increase #filters in 2 times after pooling

A	A-LRN	B	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
input (224×224 RGB image)					
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
maxpool					
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
maxpool					
conv3-256	conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv1-256	conv3-256 conv3-256 conv3-256 conv3-256
maxpool					
conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv1-512	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv1-512	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Inception block



1×1 convolutions

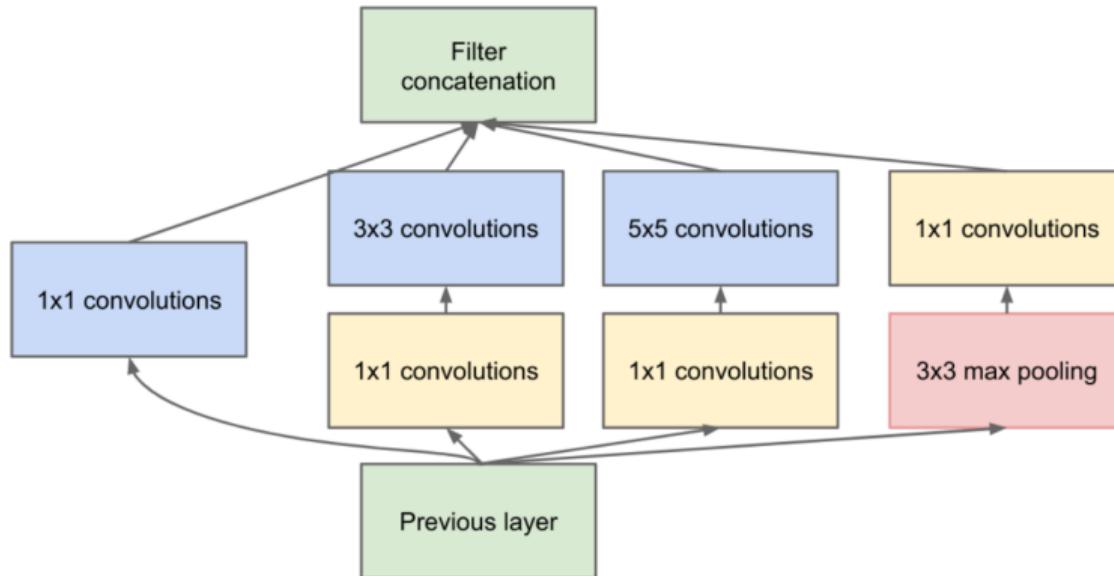


1×1 convolution maps N_{in} channels to N_{out} channels.

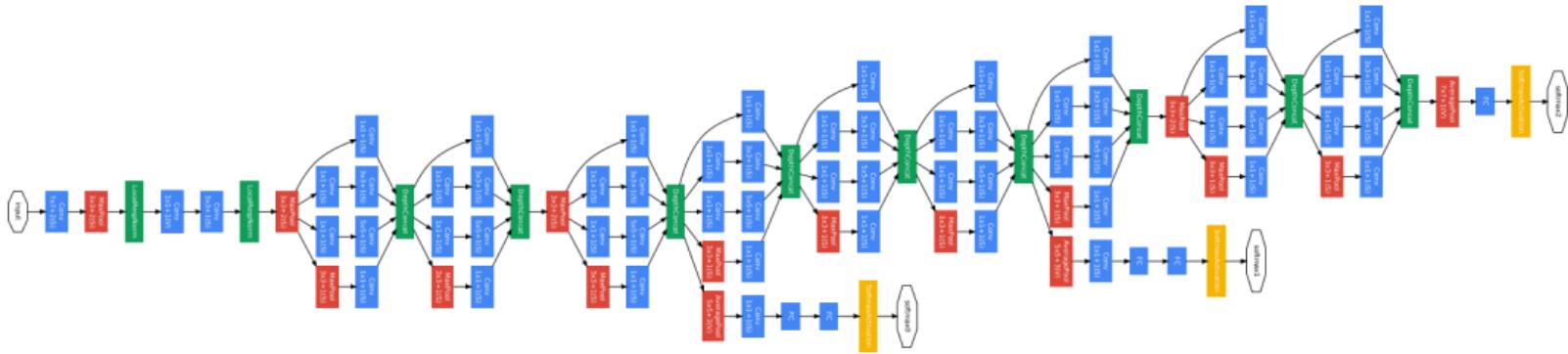
May be used as:

- a set of local classifiers
- a method for expanding ($N_{\text{in}} < N_{\text{out}}$) or reducing ($N_{\text{in}} > N_{\text{out}}$) tensor depth

Inception block with dim reduction



Inception architecture

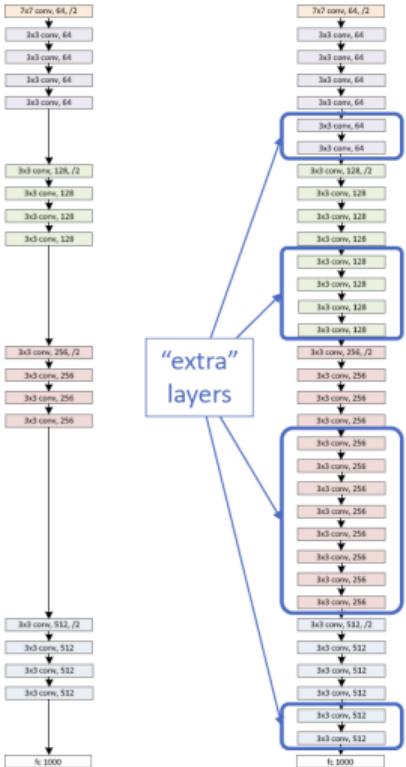
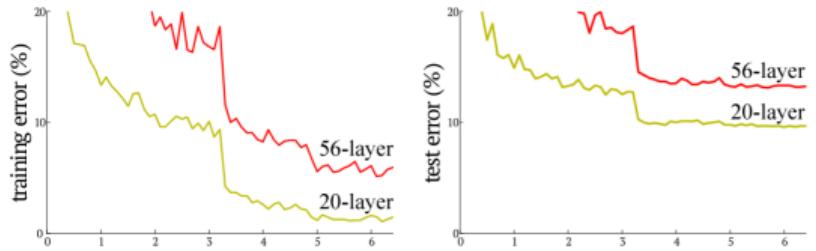


Deep network made of inception blocks. To make training more stable, uses several heads for supervision

Outline

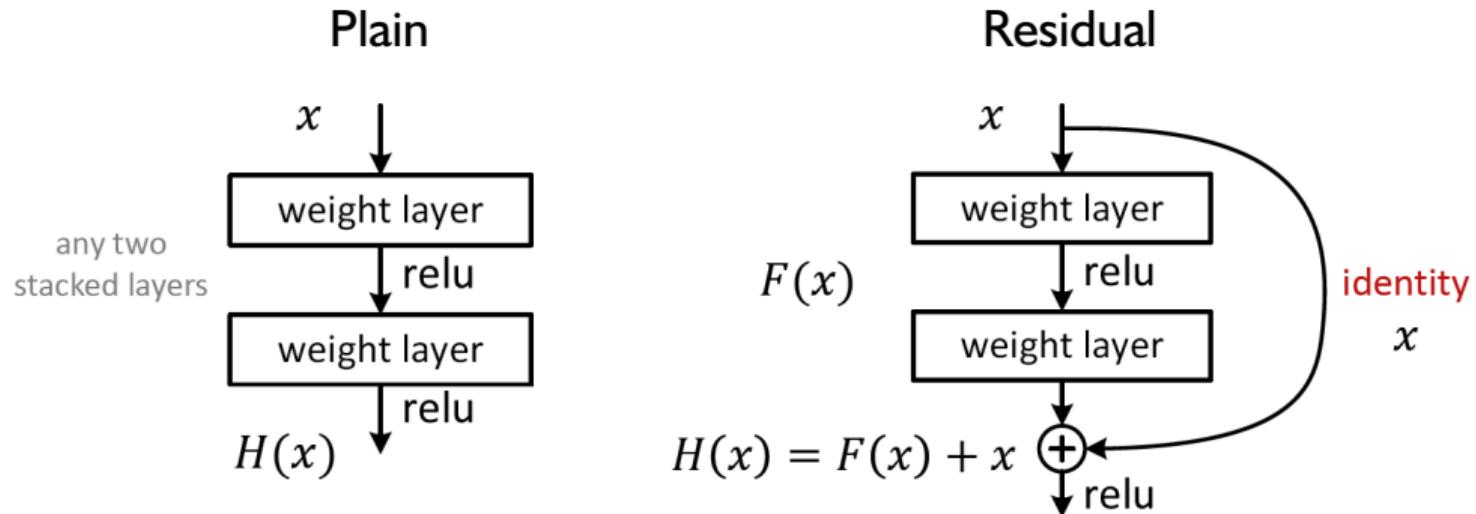
- I. CNN features and finetuning
2. AlexNet, VGG, Inception
3. ResNet and its' improvements
4. Mobile architectures
5. How good is ImageNet?

Increasing network depth



Simply increasing network depth doesn't work. However using identity layers we may obtain neural network of arbitrary depth. Therefore it's training problem

Residual block

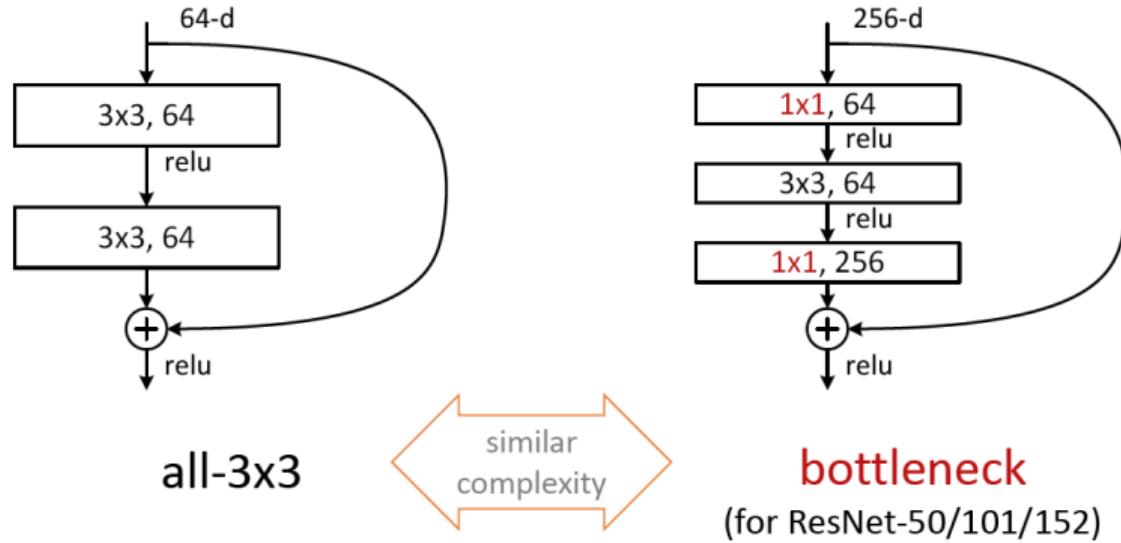


Skip connections will help network learn additive component to the identity function. Gradient are able now to flow through skip connections

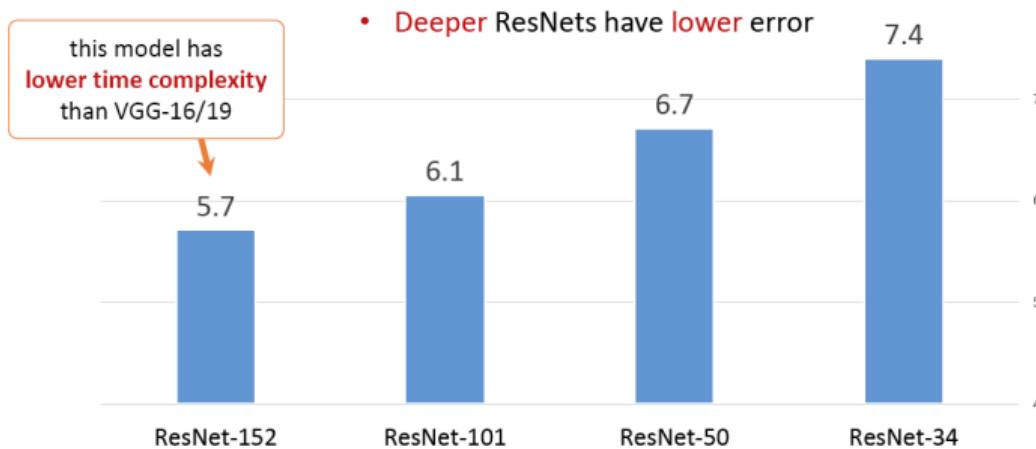
ResNet

Only 3×3 convolutions, subsampling using stride 2

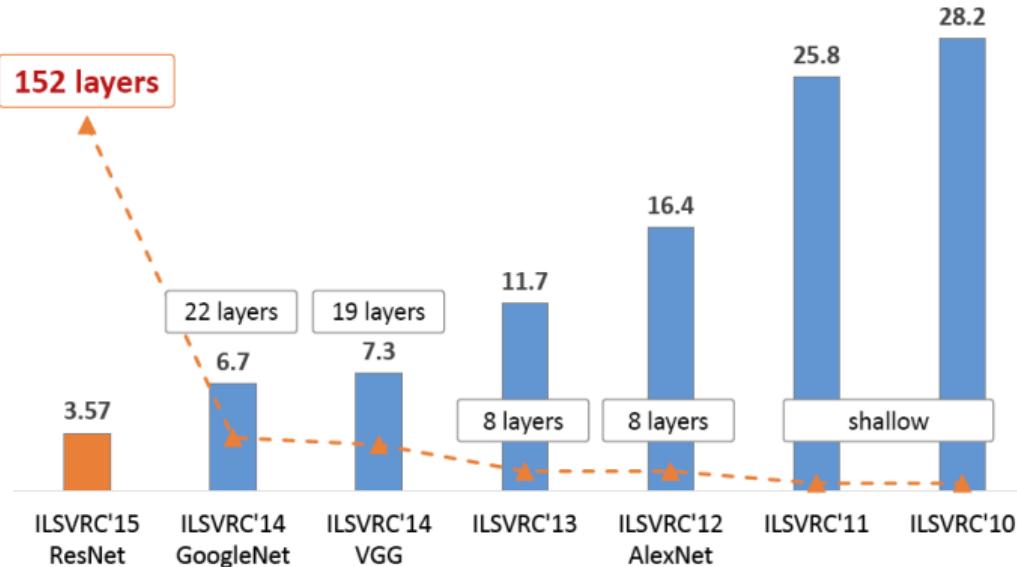
Repeating residual bottleneck blocks:



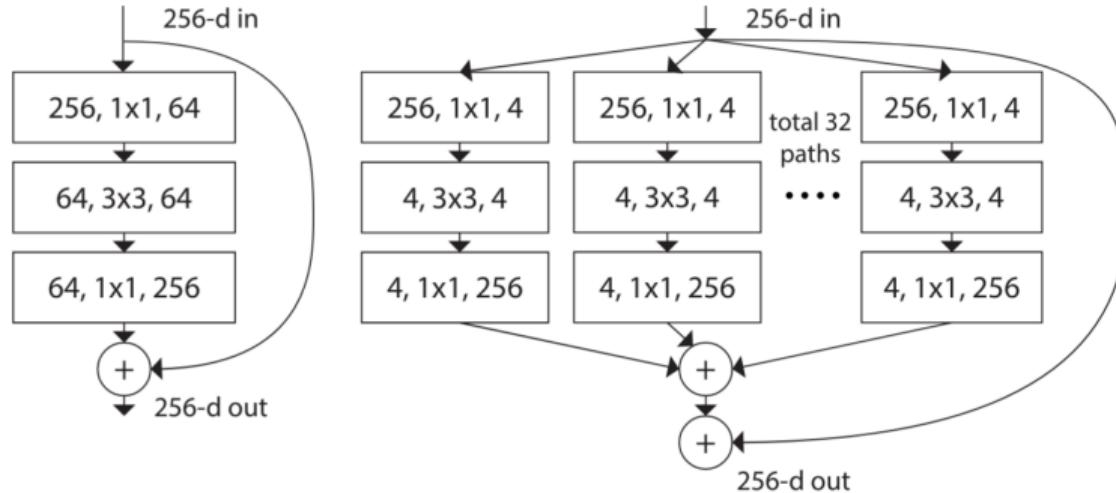
ResNet results



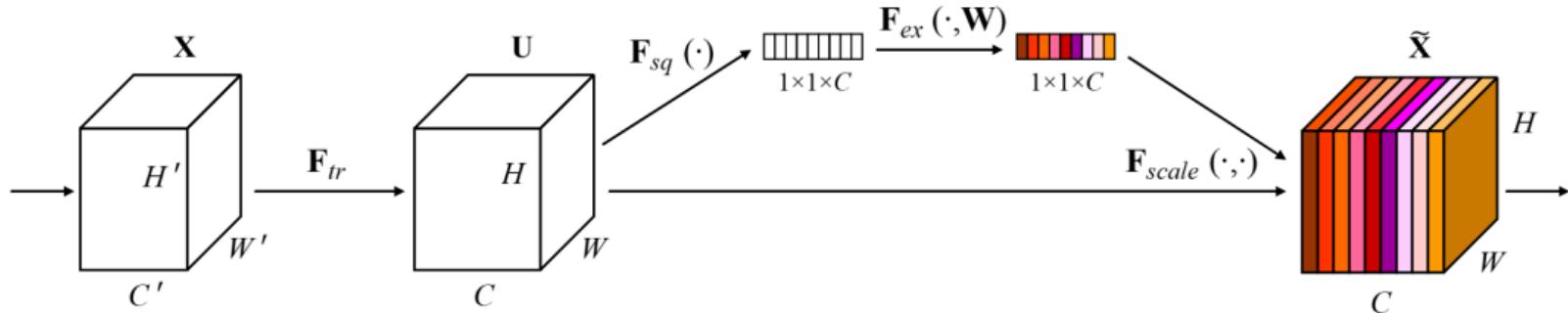
Comparing ResNet to previous backbones



ResNeXt



Squeeze-and-Excitation

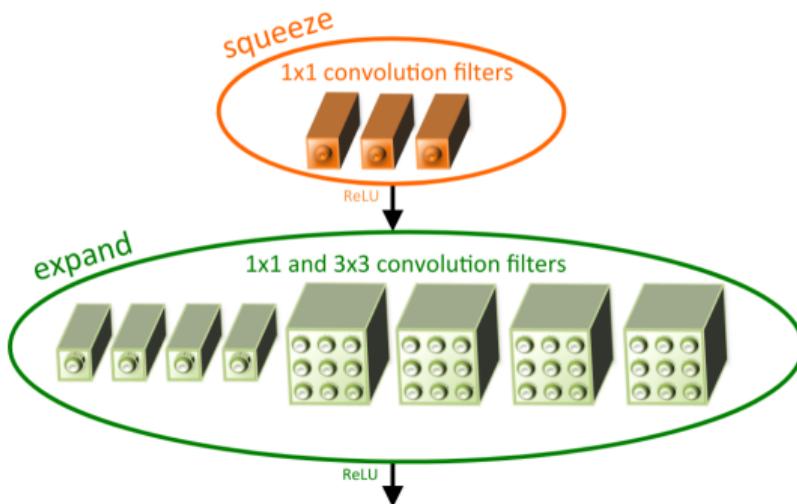
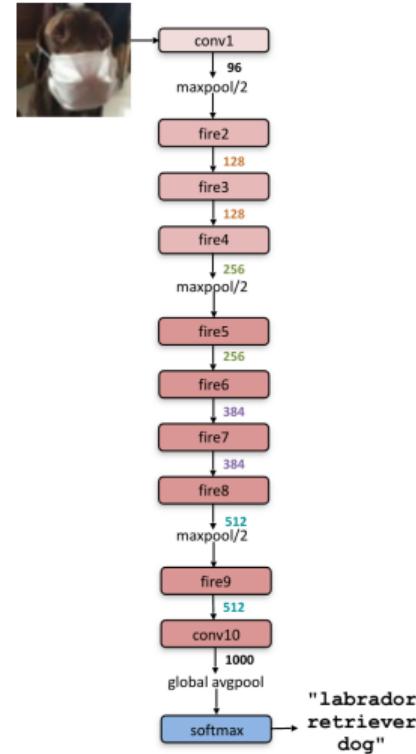


	original		re-implementation			SENet		
	top-1 err.	top-5 err.	top-1err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [10]	24.7	7.8	24.80	7.48	3.86	23.29 _(1.51)	6.62 _(0.86)	3.87
ResNet-101 [10]	23.6	7.1	23.17	6.52	7.58	22.38 _(0.79)	6.07 _(0.45)	7.60
ResNet-152 [10]	23.0	6.7	22.42	6.34	11.30	21.57 _(0.85)	5.73 _(0.61)	11.32
ResNeXt-50 [47]	22.2	-	22.11	5.90	4.24	21.10 _(1.01)	5.49 _(0.41)	4.25
ResNeXt-101 [47]	21.2	5.6	21.18	5.57	7.99	20.70 _(0.48)	5.01 _(0.56)	8.00
VGG-16 [39]	-	-	27.02	8.81	15.47	25.22 _(1.80)	7.70 _(1.11)	15.48
BN-Inception [16]	25.2	7.82	25.38	7.89	2.03	24.23 _(1.15)	7.14 _(0.75)	2.04
Inception-ResNet-v2 [42]	19.9 [†]	4.9 [†]	20.37	5.21	11.75	19.80 _(0.57)	4.79 _(0.42)	11.76

Outline

1. CNN features and finetuning
2. AlexNet, VGG, Inception
3. ResNet and its' improvements
4. Mobile architectures
5. How good is ImageNet?

SqueezeNet



Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. ICLR 2017

Depthwise separable convolutions

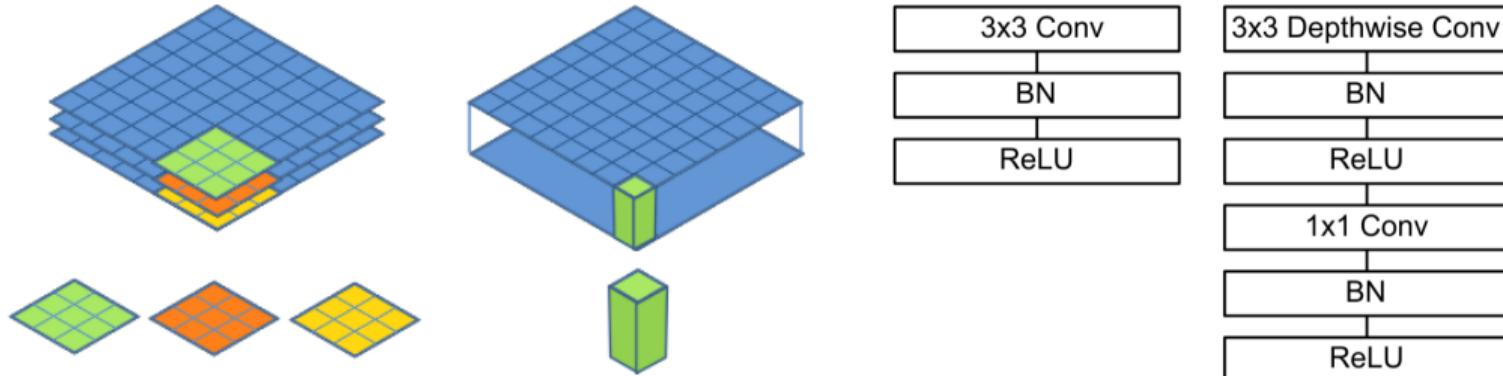
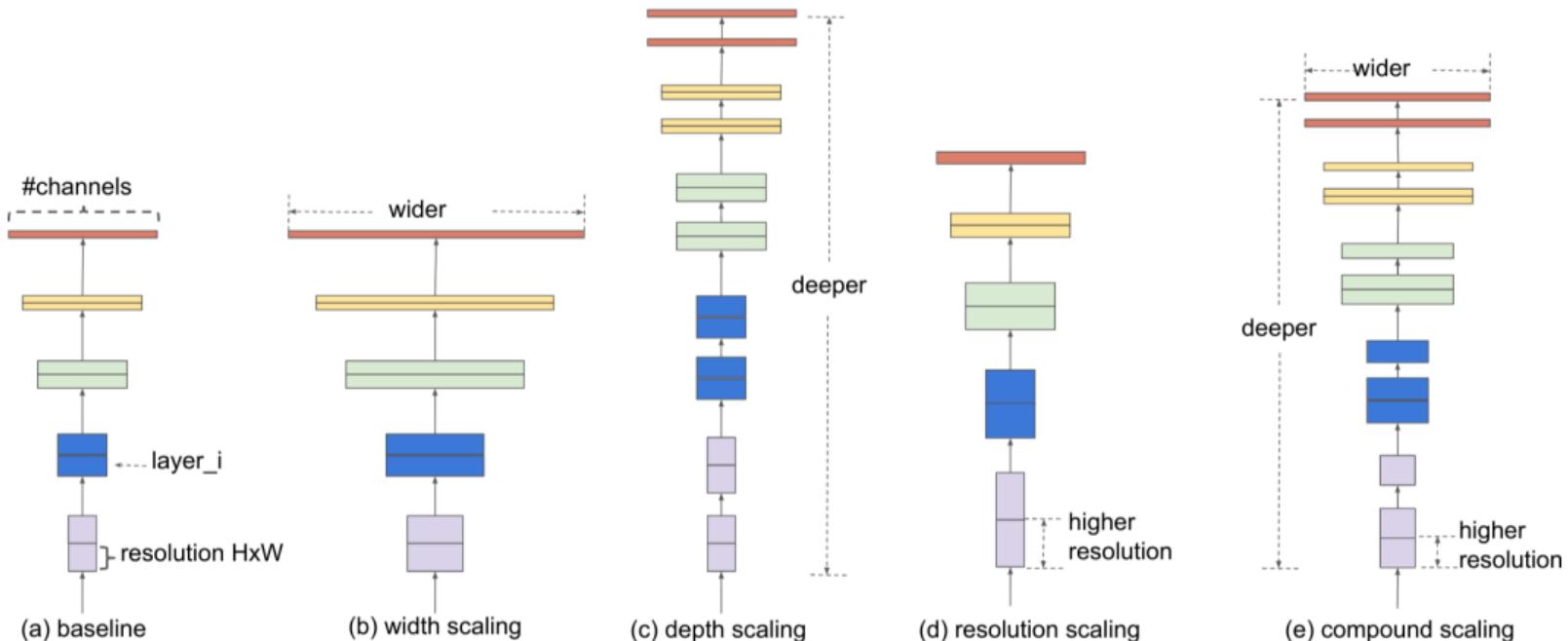


Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

EfficientNet



EfficientNet

depth: $d = \alpha^\phi$

width: $w = \beta^\phi$

resolution: $r = \gamma^\phi$

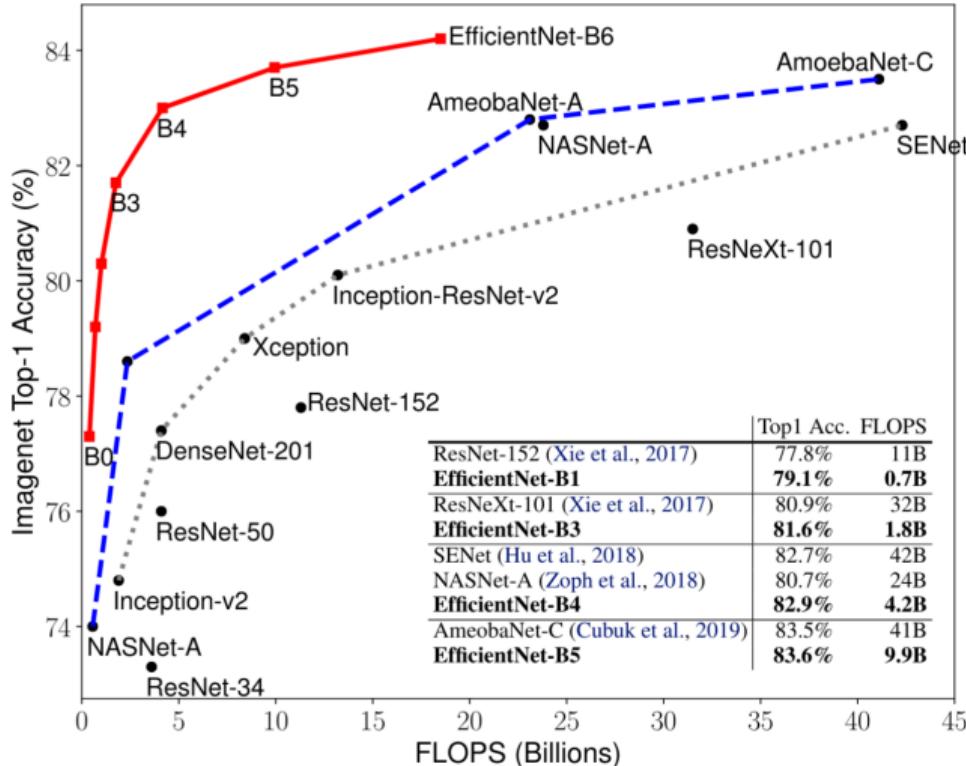
s.t. $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$

$\alpha \geq 1, \beta \geq 1, \gamma \geq 1$

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBCConv1, k3x3	112×112	16	1
3	MBCConv6, k3x3	112×112	24	2
4	MBCConv6, k5x5	56×56	40	2
5	MBCConv6, k3x3	28×28	80	3
6	MBCConv6, k5x5	14×14	112	3
7	MBCConv6, k5x5	14×14	192	4
8	MBCConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

EfficientNet-B0

EfficientNet results



Outline

1. CNN features and finetuning
2. AlexNet, VGG, Inception
3. ResNet and its' improvements
4. Mobile architectures
5. How good is ImageNet?

Classification example

mite black widow cockroach tick starfish	container ship lifeboat amphibian fireboat drilling platform	motor scooter go-kart moped bumper car golfcart	leopard jaguar cheetah snow leopard Egyptian cat
grille convertible grille pickup beach wagon fire engine	mushroom agaric mushroom jelly fungus gill fungus dead-man's-fingers	cherry dalmatian grape elderberry ffordshire bullterrier currant	Madagascar cat squirrel monkey spider monkey titi indri howler monkey

Relabelling ImageNet

Old label: pier
Real: dock; pier;
speedboat; sandbar;
seashore

Old label: quill
Real: feather boa

Old label: sunglass
Real: sunglass;
sunglasses

Old label: hammer
Real: screwdriver;
hammer; power drill;
carpenter's kit

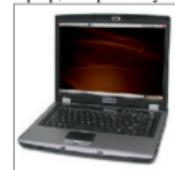
Old label: water jug
Real: water bottle

Old label: sunglasses
Real: sunglass;
sunglasses

Old label: monitor
Real: mouse; desk;
desktop computer; lamp;
studio couch; monitor;
computer keyboard

Old label: chain
Real: necklace

Old label: laptop
Real: notebook;
laptop; computer keyboard



Old label: zucchini
Real: broccoli;
zucchini; cucumber;
orange; lemon; banana

Old label: purse
Real: wallet

Old label: notebook
Real: notebook;
laptop; computer keyboard

Old label: ant
Real: ant; ladybug

Old label: passenger car
Real: school bus

Old label: laptop
Real: notebook;
laptop

Relabelling ImageNet

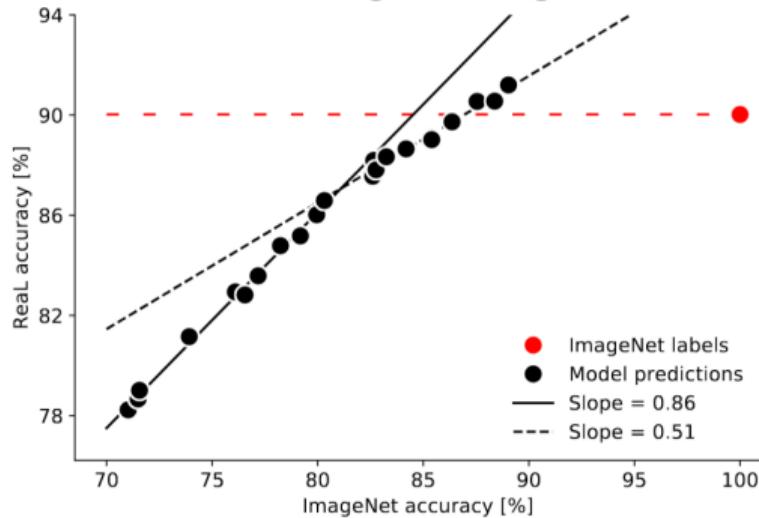
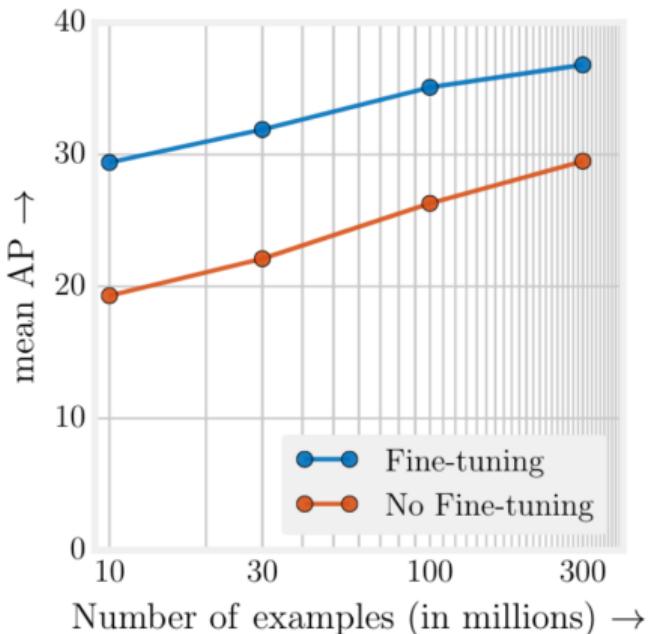


Figure 4: Comparing progress on ReaL accuracy and the original ImageNet accuracy. We measured the association between both metrics by regressing ImageNet accuracy onto ReaL accuracy for the first (solid line) and second half (dashed line) of the models in our pool.

Relabelling ImageNet

Model	ImageNet accuracy			ReaL accuracy			
	90 epochs	270 epochs	900 epochs	90 epochs	270 epochs	900 epochs	
ResNet-50	Baseline	76.0	76.9 (+0.9)	75.9 (-0.1)	82.5	82.9 (+0.4)	81.6 (-0.9)
	+ Sigmoid	76.3 (+0.3)	77.8 (+1.8)	76.9 (+0.9)	83.0 (+0.5)	83.9 (+1.4)	82.7 (+0.2)
	+ Clean	76.4 (+0.4)	77.8 (+1.8)	77.4 (+1.4)	82.8 (+0.3)	83.7 (+1.2)	83.3 (+0.8)
	+ Both	76.6 (+0.6)	78.2 (+2.2)	78.5 (+2.5)	83.1 (+0.6)	84.3 (+1.8)	84.1 (+1.6)
ResNet-152	Baseline	78.0	78.3 (+0.3)	77.1 (-0.9)	84.1	83.8 (-0.3)	82.3 (-1.8)
	+ Sigmoid	78.5 (+0.5)	78.7 (+0.7)	77.4 (-0.6)	84.6 (+0.5)	84.3 (+0.2)	82.7 (-1.4)
	+ Clean	78.6 (+0.6)	79.6 (+1.6)	79.0 (+1.0)	84.4 (+0.3)	85.0 (+0.9)	84.4 (+0.3)
	+ Both	78.7 (+0.7)	79.8 (+1.8)	79.3 (+1.3)	84.6 (+0.5)	85.2 (+1.1)	84.5 (+0.4)

Using larger datasets



- JFT-300M dataset (Google)
- 1B tags, 18291 classes
- 375M tags after filtering, ~20% errors
- Training ResNet-101 on $50 \times$ K80 for a month

Conclusion

We reviewed following topics:

- using backbones as universal feature extractors
- building deep networks using basic blocks from 3×3 convolutions
- using multiple paths for processing tensors
- skip connections for training very deep networks
- basic attention mechanism
- factorizing convolutions
- ImageNet quality and larger datasets