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How can we analyze a neural network?




How can we analyze a neural network?
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We can visualize:
* trained weights
® max activations of a particular neuron
* projection of a high-dimensional features space



Visualizing filters

convl conv2



Visualizing image fragments




Visualizing image fragments
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Visualizing image fragments
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Visualizing image fragments




Visualizing image fragments
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Visualizing filters with deconvnet during training

Zeiler, Fergus. Visualizing and Understanding Convolutional Networks. ECCV 2014



Visualizing feature space with t-SNE

Compute L, distance for
4096-dim vectors (fcé or fc7
layers)

Project in 2-dim space,
approximately preserving L,
distances

Visulize images. See that
semantically similar images are
close to each other







Visualizing feature space with UMAP

MNIST Digits Embedded via UMAP
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DMclnnes, Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.

arXiv:1802.03426




Visualizing feature space with UMAP

DMclnnes, Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.

arXiv:1802.03426
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Reusing features from classification networks
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Donahue et al. Decaf: A deep convolutional activation feature for generic visual recognition. ICLR 2014



Finetuning a neural network

384 384 256

Max
Max Max pooling
pooling poaoling

Replace last classifier layer and finetune the network with smaller learning
rate. During finetuning we may use small training dataset



Finetuning a neural network

Max
poaoling

Replace last classifier layer and finetune the network with smaller learning
rate. During finetuning we may use small training dataset

We now come to idea of backbones: baseline architectures that are
pretrained on large datasets
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AlexNet

| I X1l conv, 96, /4, pool/2 |
v

| 5x5 conv, 256, pool/2 |
v

| 3x3 cony, 384 |
v

| 3X3 conv, 384 |
v

| 3x3 conv, 256, pool/2 |
v

| fc, 4096 |
v

| fc, 4096 |
v

| fc, 1000 |

Krizhevsky et al. Imagenet classification with deep convolutional neural networks. NIPS 2012



Applying AlexNet to different resolutions

* Fixed resolution:

crop
e Sample several random crops, average results
¢ Scan whole image with fixed size window, average scores




Spatial Pyramid Pooling

fully-connected layers (fcg, fc7)

fixed-length representation

— —
Y 16x256-d 'y 4x256-d 'y 256-d

LA

spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

ﬁ convolutional layers
input image

Single pooling layer across all features is called average pooling

He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. TPAMI 2015
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VGG

Key ideas:

Use only 3 X3 convolutions
Increase depth

Use only pooling for decreasing
resolution

Increase #filters in 2 times after
pooling

A A-LRN B | C D E
TT weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 X 224 RGB 1mage)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
| LRN conv3-64 conv3-64 conv3-64 | conv3-64

‘maxpool
conv3-128 | conv3-128 | conv3-128 [ conv3-128 [ conv3-128 | conv3-128
| } conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

‘maxpool

FC-4096

FC-4096

FC-1000

soft-max

Simonyan, Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015
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Inception block

Filter
concatenation

T

1x1 convolutions

3x3 convolutions

5x5 convolutions

Szegedy et al. Going deeper with convolutions. CVPR 2015

Previous layer

3x3 max pooling

22



| X | convolutions

4649

I X 1 convolution maps N, channels to N, channels.
May be used as:
* aset of local classifiers
* a method for expanding (N,, < N,,,) or reducing (N,, > N_,,) tensor

depth

23



Inception block with dim reduction

Filter
concatenation

ﬂv

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

)

wjtions

-

1x1 convolutions

Previous layer

Szegedy et al. Going deeper with convolutions. CVPR 2015

)

3x3 max pooling
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Inception architecture

Deep network made of inception blocks. To make training more stable,
uses several heads for supervision

Szegedy et al. Going deeper with convolutions. CVPR 2015
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Increasing network depth

20-layer

training error (%)

test error (%)

20-layer

o T 2 3 ¥ 5 6 0 1 2 5 0 5 6

Simply increasing network depth
doesn’t work. However using
identity layers we may obtain neural
network of arbitrary depth.
Therefore it’s training problem

27



Residual block

Plain Residual

X l X
A

y

weight layer weight layer
any two
stacked layers v relu F(x) v relu identity
weight layer weight layer X

lrelu
H(x) H(x)=F(x)+x

Skip connections will help network learn additive component to the
identity function. Gradient are able now to flow through skip connections



ResNet

Only 3 X3 convolutions, subsampling using stride 2

Repeating residual bottleneck blocks:

256-d

1x1, 64

1x1, 256

relu

similar
complexity

bottleneck
(for ResNet-50/101/152)

all-3x3

29



this model has

lower time complexity
than VGG-16/19

5.7

ResNet-152

ResNet results

* Deeper ResNets have lower error

6.7

ResNet-101 ResNet-50

7.4

ResNet-34

30



Comparing ResNet to previous backbones

152 layers

A
\
\

A
\

\
\
' 73

v 6.7

357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
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ResNeXt

256, 1x1, 4 256, 1x1, 4 total 32 256, 1x1, 4
2 2 paths L2
‘ 4,3x3,4 | 4,3x3,4 seee 4,3x3,4
- v v
Covaas | [ammse | [ame)

256-d out

256-d out

Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017
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Squeeze-and-Excitation

Fe. (W) -
X U F,, ()~ [T ——— N X
1x1xC 1x1xC /// //
H
H' Ftr H Fsca/e (>)
e _—
w' w
Cc’ C
original re-implementation SENet
top-1 err. | top-5 err. | top-lerr. | top-5err. | GFLOPs | top-1 err. top-5 err. GFLOPs
ResNet-50 [10] 24.7 7.8 24.80 7.48 3.86 23.29(1.51) 6.62(0.36) 3.87
ResNet-101 [10] 23.6 7.1 23.17 6.52 7.58 22.38(0.79) | 6.07(0.45) 7.60
ResNet-152 [10] 23.0 6.7 22.42 6.34 1130 | 21.57(0.85) | 5.73(0.61) 11.32
ResNeXt-50 [17] 222 R 2211 5.90 124 | 2110001 | 5490.41) 1.25
ResNeXt-101 [47] 21.2 5.6 21.18 5.57 7.99 20.70(9.48) 5.01(0.56) 8.00
VGG-16 [39] - - 27.02 8.81 15.47 25.22(1.80) 7.7001.11) 15.48
BN-Inception [16] 25.2 7.82 25.38 7.89 2.03 24.231.15) | T14(0.75) 2.04
Inception-ResNet-v2 [42] | 19.91 4.9" 20.37 5.21 1175 | 19.800.57) | 4.790.42) 11.76

Hu et al. Squeeze-and-Excitation Networks. CVPR 2018
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SqueezeNet

1x1 convolution filters

elolo) Alololo)
000) 000

O e e .'.'

maxpol/2

=

global avgpool

"labrador
retriever
dog"

landola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. ICLR

2017
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Depthwise separable convolutions

| 3x3 Conv | |3x3 Depthwise Convl
I |

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017
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EfficientNet

#channels

deeper
deeper
- layer_i
"+ higher i ~,-higher
}resoluiontxw [~ [ | resolution b _+_resolution
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Tan, Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICLR 2019
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EfficientNet

depth: d = o
width: w = ¢
resolution: 7 = ~¢
st.a-pB%- 7% ~2
a>l,p>1y=>1

Tan, Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICLR 2019

Stage Operator Resolution | #Channels | #Layers
i 7 ‘ HxW, | G L
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConvo6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConvo6, k3x3 X7 320 1
9 Convlx! & Pooling & FC TxT7 1280 1

EfficientNet-B0O
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EfficientNet results

EfficientNet-B6

Amoebg_l;let-c
AmeobaNet-A _ = =====""" -
7’
" NASNet-A

2t

2
>
[$]
g
3
3
< ’/ ". i
- r,’ .-®Xception
ey . eResNet-152
5 [ Topl Ace. FLOPS
g BO,' DenseNet-201 ResNet-152 (Xie et al., 2017) 77.8% 11B
1S} N EfficientNet-B1 79.1% 0.7B
ETG ,' e ResNeX(-101 (Xie et al,, 2017) 80.9% 32B
= < ResNet-50 EfficientNet-B3 81.6% 1.8B
I : SENet (Hu et al., 2018) 82.7% 2B
,' ° . NASNet-A (Zoph et al., 2018) 80.7% 24B
Inception-v2 EfficientNet-B4 829%  4.2B
7444 AmeobaNet-C (Cubuk et al,, 2019)| 83.5% 41B
NASNet-A EfficientNet-B5 83.6%  9.9B
ResNet-34
0 5 10 15 20 25 30 35 40 45

Tan, Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICLR 2019

FLOPS (Billions)
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Classification example

container ship

motor scooter

black widow
cockroach
tick

container ship

MGE}I’ scooter

lifeboat
amphibian

fireboat

drilling platform

go-kart
moped
bumper car

beach wagon

agaric
mushroom
jelly fungus
gill fungus

snow leopard
Egyptian cat
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Old label: pier
Real: dock: pier:
speedboat; sandbar;
seashore

Old label: quill
Real.: feather boa

Old label: sung]
Real.: sunglass;
sunglasses

Old label: hammer
Real: screwdriver;
hammer; power drill;
carpenter’s kit

Old label: water jug
Real_: water bottle
"

Old label: sunglasses
Real.: sunglass;
sunglasses

Beyer et al. Are we done with ImageNet? 2020

Old label: monitor Old label: zucchini
Real.: mouse; desk; Real: broceoli
desktop computer; lamp;  zucchini; cucumber;
studio couch; monitor;  orange; lemon; banana
computer keyboard
G —

Relabelling ImageNet

Old label: ant
Real: ant; ladybug

Old label: laptop Old label: notebook
Real.: notebook; Real.: notebook;

laptop: computer keyboard laptop; computer keyboard laptop

Old label: laptop
Real.: notebook;

42



94

Relabelling ImageNet

90 ®- - - - - - - [ ]

86

Real accuracy [%]

@® ImageNet labels

@ Model predictions
—— Slope = 0.86
--- Slope = 0.51

78

70 75 80 85 90 95 100
ImageNet accuracy [%]

Figure 4: Comparing progress on Real accuracy and
the original ImageNet accuracy. We measured the asso-
ciation between both metrics by regressing ImageNet
accuracy onto RealL accuracy for the first (solid line)
and second half (dashed line) of the models in our pool.

Beyer et al. Are we done with ImageNet? 2020
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Relabelling ImageNet

ImageNet accuracy

Real. accuracy

Model

90 epochs 270 epochs 900 epochs 90 epochs 270 epochs 900 epochs
& Baseline  76.0 76.9 (+0.9) 75.9 (-0.1) 82.5 829 (+0.4) 81.6(-0.9)
5+ Sigmoid 76.3 (+0.3) 77.8 (+1.8) 76.9 (+0.9) 83.0 (+0.5) 83.9 (+1.4) 82.7 (+0.2)
% + Clean 764 (+0.4) 77.8 (+1.8) 77.4 (+1.4) 82.8 (+0.3) 83.7 (+1.2) 83.3(+0.8)
&+ Both 76.6 (+0.6) 78.2 (+2.2) 78.5 (+2.5) 83.1 (+0.6) 84.3 (+1.8) 84.1 (+1.6)
@ Baseline  78.0 78.3 (+0.3) 77.1(-0.9) 84.1 83.8 (-0.3) 82.3(-1.8)
;‘) + Sigmoid 78.5 (+0.5) 78.7 (+0.7) 77.4 (-0.6) 84.6 (+0.5) 84.3 (+0.2) 82.7(-1.4)
Z +Clean 78.6 (+0.6) 79.6 (+1.6) 79.0 (+1.0) 84.4 (+0.3) 85.0 (+0.9) 84.4 (+0.3)
& +Both 78.7 (+0.7) 79.8 (+1.8) 79.3 (+1.3) 84.6 (+0.5) 85.2 (+1.1) 84.5(+0.4)

Beyer et al. Are we done with ImageNet? 2020
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Using larger datasets

JFT-300M dataset (Google)

g; ” ¢ |B tags, 1829I classes
5 ® 375M tags after filtering, ~20%
H errors
N o Fietmin e Training ResNet- 101 on 50X K80
®—e No Fine-tuning for a month
0 10 30 100 300

Number of examples (in millions) —

Sun et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. ICCV 2017

43



Conclusion

We reviewed foolowing topics:

using backbones as universal feature extractors

building deep networks using basic blocks from 3 X3 convolutions
using multiple paths for processing tensors

skip connections for training very deep networks

basic attention mechanism

factorizing convolutions

ImageNet quality and larger datasets

44
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