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Vision Transformer

Dosovitskiy et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. ICLR 2021
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Multi-Head Self-Attention
[𝑞, 𝑘, 𝑣] = 𝑧𝑈𝑞𝑘𝑣,

𝐴 = softmax(𝑞𝑘𝑇/√𝐷ℎ),
SA(𝑧) = 𝐴𝑣

MSA(𝑧) = [SA1(𝑧); SA2(𝑧);… ; SA𝑘(𝑧)]𝑈𝑚𝑠𝑎,

𝑧 ∈ ℝ𝑁×𝐷, 𝑈𝑞𝑘𝑣 ∈ ℝ𝐷×3𝐷ℎ

𝐴 ∈ ℝ𝑁×𝑁

𝑈𝑚𝑠𝑎 ∈ ℝ𝑘⋅𝐷ℎ×𝐷
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MSA visualization, 8×8 patches
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Vision Transformer
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Vision Transformer
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Data-Efficient Transformer
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Swin Transformer

Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021
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Shifted window attention

Include positional information in
self-attention:

𝑆𝐴(𝑞, 𝑘, 𝑣) = softmax(𝑞𝑘𝑡/√𝐷ℎ + 𝑏)𝑣

𝑏 ∈ ℝ𝑁×𝑁

Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021
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Swin variants
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Swin Transformer
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ConvNeXt

Baseline ResNet-50 with modern
training:
• 90 → 300 epochs
• AdamW optimizer
• Augmentations: Mixup, Cutmix,

RandAugment, Random Erasing
• Regulatization: Stoch. Depth,

Label Smoothing
76.1% → 78.8% on ImageNet

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt

Macro design

Change #blocks
(3,4,6,3) → (3,3,9,3)

Change “patchify” stem
7×7 conv/2, pool/2 → 4×4 conv/4

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt

Inverted bottleneck

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt

ReLU →→→ GELU
𝐺𝐸𝐿𝑈(𝑥) = 𝑥Φ(𝑥)

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt

BatchNorm →→→ LayerNorm

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt
Block design

Liu et al. A ConvNet for the 2020s. CVPR 2022
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ConvNeXt results
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Universal Inverted Bottleneck

Qin et al. MobileNetV4 — Universal Models for the Mobile Ecosystem. arXiv:2404.10518
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Mobile MQA
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Roofline analysis
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Roofline analysis
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Roofline analysis
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Found architectures
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Evaluation results
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Conclusion

We reviewed three key modern backbones:
1. Vision Transformer (ViT) applies ideas from NLP to images. Key

element is attention — mechanism for gathering information across
whole image

2. Swin Transformer reintroduces convnet priors to transformers using
shifted window attention

3. ConvNeXt modernizes ResNets into a transformer-like fully
convolutional architecture

4. MobileNetV4 combines ideas from CNNs and transformers and uses
NAS and Roofline Analysis to find fast architectures that works well
across various devices
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