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Vision Transformer

Vision Transformer (ViT) Transformer Encoder
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Dosovitskiy et al. An Image is Worth 16X 16 Words: Transformers for Image Recognition at Scale. ICLR 202I



Multi-Head Self-Attention
[q’ k, V] = Zquv’ = RNXD’ quv c RDX3Dh
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MSA visualization, 8 X8 patches
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Vision Transformer

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M
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Vision Transformer

RGB embedding filters
(first 28 principal components)

Position embedding similarity ViT-L/16
= g

! ....... é 120 -":‘.-“-: ll'luuu'l
g2....-'. o j;'loo 3: :5!!!!- .
S HENEEEE = ool
f.ammnmnEEl ¢ olinhE
o S .
ammnnmel i L e
3 L L1111 ® w0l - Head3
A L L1 ] Y L

1 2 3 4 5 6 7 0o 5 10 15 20

Input patch column Network depth (layer)



Data-Efficient Transformer

Methods ViT-B DeiT-B
Epochs 300 300
Batch size 4096 1024
Optimizer AdamW AdamW
learning rate 0.003  0.0005 x bachsize
Learning rate decay ~ cosine cosine
Weight decay 0.3 0.05
Warmup epochs 34 5
Label smoothing & X 0.1
Dropout 0.1 X
Stoch. Depth X 0.1
Repeated Aug X 4
Gradient Clip. v X
Rand Augment X 9/0.5
Mixup prob. X 0.8
Cutmix prob. X 1.0
Erasing prob. X 0.25

nb of | image ImNet | Real v2
Network param. size im/s top-1 | top-1 | top-1
ResNet-18 12M | 224 44584 | 69.8 713 | 57.1
ResNet-50 25M 224 1226.1 76.2 825 | 633
ResNet-101 45M | 224 753.6 | 774 83.7 | 65.7
ResNet-152 60M | 224 5264 | 783 84.1 | 67.0
RegNet Y-4GFx 2IM 224 1156.7 80.0 864 | 694
RegNet Y-8GFx 39M 224 591.6 81.7 874 | 708
RegNetY-16GFx 84M 224 3347 829 88.1 724
EfficientNet-BO 5M 224 2694.3 77.1 835 | 643
EfficientNet-B1 8M 240 1662.5 79.1 849 | 66.9
EfficientNet-B2 oM 260 1255.7 80.1 859 | 688
EfficientNet-B3 12M 300 732.1 81.6 86.8 70.6
EfficientNet-B4 19M 0 3494 82.9 88.0 | 72.3
EfficientNet-BS 30M 456 169.1 83.6 883 73.6
EfficientNet-B6 43M 528 96.9 84.0 88.8 73.9
EfficientNet-B7 66M 600 55.1 84.3 - -
EfficientNet-B5 RA 30M 456 96.9 83.7 - -
EfficientNet-B7 RA 66M 600 55.1 84.7 - =
KDforAA-B8 87M | 800 252 | 88 | - | -

Transformers: training 300 epochs
ViT-B/16 86M 384 85.9 779 83.6 -
ViT-L/16 307M 384 273 76.5 822 -
DeiT-Ti M 224 2536.5 722 80.1 60.4
DeiT-S 22M 224 9404 | 79.8 85.7 | 685
DeiT-B 86M 224 2923 81.8 86.7 71.5
DeiT-B1384 86M 384 85.9 83.1 87.7 724
DeiT-Tin 6M 224 2529.5 74.5 82.1 629
DeiT-S= 22M 24 936.2 81.2 86.8 70.0
DeiT-Ba 87M | 224 290.9 | 83.4 88.3 | 732
DeiT-B» 1384 87M 384 85.8 84.5 89.0 | 748
Transformers: training 1000 epochs

DeiT-Tin 6M 224 2529.5 76.6 839 | 654
DeiT-S= 22M | 224 9362 | 826 87.8 | 71.7
DeiT-B~ 87M | 224 290.9 | 84.2 88.7 | 739
DeiT-B» 1384 87™M 384 85.8 85.2 89.3 752

*: our trained teachers with SGD, whose optimization procedure is closer to DeiT
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Swin Transformer
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Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 202I o



Shifted window attention

Layer | Layer 1+1

[ ]

A local window to
perform self-attention
—
A patch

R

Include positional information in
self-attention:

SA(q, k,v) = softmax(qk'//D, + b)v
b = RNXN

Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 202I



downsp. rate
(output size)

Swin-T

Swin variants

Swin-S

Swin-B

Swin-L

concat 4x4, 96-d, LN

concat 4x4, 96-d, LN

concat 4x4, 128-d, LN concat 4x4, 192-d, LN
stage 1 4x win. sz. 7x7 win. sz. 7x7 win. sz. 7x7 win. sz. 7x7
(56>56) dim 96, head 3| <2 dim 96, head 3| <2 dim 128, head 4| * 2 | |dim 192, head 6| * 2
concat 2x2, 192-d , LN | concat 2x2, 192-d , LN concat 2x2, 256-d , LN concat 2x2, 384-d , LN
stage 2 8x win. sz. 7x7 win. sz. 7x7 win. sz. 7x7 win. sz. 7x7
@828 | | gim 192, head 6] <2 | |dim 192, head 6| <% | |dim 256, head 8] X% | |dim 384, head 12| * 2
concat 2x2, 384-d , LN | concat 2x2,384-d, LN | concat2x2,512-d,LN | concat2x2,768-d , LN
stage 3 16x win. sz. 7x7 win. sz. 7x7 win. sz. 7x7 win. sz. 7x7
A4XID 1 Gim 384, head 12| < © | |dim 384, head 12| * '8 | |dim 512, head 16| * '® | |dim 768, head 24| < '8
30 concat 2x2, 768-d , LN | concat 2x2,768-d , LN | concat2x2, 1024-d , LN | concat 2x2, 1536-d , LN
stage 4 Tx7) win. sz. 7x7, 2 win. sz. 7x7,
dim 768, head 24

dim 768, head 24] X2

win. sz. 7x7, “ 2
dim 1024, head 32

X 2

win. sz. 7x7,
dim 1536, head 48



Swin Transformer

(a) Regular ImageNet-1K trained models

method image #param. FLOPs lhroughput ImageNet

size (image / s) |top-1 acc.
RegNetY-4G [48] 2247 2IM  4.0G 1156.7 80.0
RegNetY-8G [48] 2242 39M  8.0G 591.6 81.7
RegNetY-16G [48]) 2242 84M  16.0G  334.7 82.9
EffNet-B3 [58] [3002 12M 1.8G 732.1 81.6
EffNet-B4 [58] |380% 19M  4.2G 349.4 82.9
EffNet-B5 [58] |456% 30M  9.9G 169.1 83.6
EffNet-B6 [58] |5282 43M 19.0G 96.9 84.0
EffNet-B7 [58] |600° 66M 37.0G  55.1 84.3
ViT-B/16 [20] |384%> 86M 55.4G 85.9 77.9
VIT-L/16 [20] |384% 307M 190.7G  27.3 76.5
DeiT-S [63] 2247 22M  4.6G 940.4 79.8
DeiT-B [63] |224° 86M 17.5G  292.3 81.8
DeiT-B [63] 3842 86M 554G 85.9 83.1
Swin-T 224 29M  4.5G 755.2 81.3
Swin-S 2242 50M 8.7G 436.9 83.0
Swin-B 224% 88M 154G 278.1 83.5
Swin-B 3842 88M 47.0G 84.7 84.5
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ConvNeXt

GFLOPs

ResNet-50/200

stage ratio
Macro I: ge ratl
Desion L patchity” stem

depth conv
ResNeXt |:

Baseline ResNet-50 with modern
training:

oo Perio s ® 90 — 300 epochs

[ e AdamW optimizer
ll(‘a'ge‘ kernel sz. 7 d A . M . C .
ernel . .

" ugmentations: Mixup, utmlx,

etz - 1+ (A RandAugment, Random Erasing
e |feveracvains ¢ Regulatization: Stoch. Depth,
R R Label Smoothing

ConvNeXt-T/B

76.1% — 78.8% on ImageNet

/B

ImageNet

Topt Acc (%) 78 80 82

Liu et al. A ConvNet for the 2020s. CVPR 2022



ConvNeXt

ResNet-50/200 n
Macro stage ratio \Er
Design ["patchwy" stem /,x(’r
depth conv *J50 .
e [ Macro design
e g dine #

—move Td. conv

kernel sz. - 5

) Change #blocks
: (3,4,6,3) — (3,3,9,3)

Large

kernel sz. - 7
Kernel

kernel sz. - 9

L kernel sz. - 11
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Micro
Design

ConvNeXt-T/B

Liu et al. A ConvNet for the 2020s. CVPR 2022

fewer activations
fewer norms 81.4S

Y
BN - LN 8158

L sep. dss. conv

/B

ImageNet

Topt Acc (%) 78 80 82

Change “patchify” stem
7X7 conv/2, pool/2 — 4X4 conv/4



ConvNeXt

GFLOPs
ResNet-50/200 %4
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ImageNet
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Liu et al. A ConvNet for the 2020s. CVPR 2022

Inverted bottleneck

1x1, 96384
d3x3, 384384 1x1, 96—384

1x1, 384—96 1x1, 384—96

(a) (b) (©)

1x1, 384—96 d3x3, 96—96

d3x3, 96—96

1x1, 96—384

Figure 3. Block modifications and resulted specifications. (a) is
a ResNeXt block; in (b) we create an inverted bottleneck block and
in (c) the position of the spatial depthwise conv layer is moved up.



ConvNeXt

ResNet-50/200

stage ratio
Macro e ral
Design
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Liu et al. A ConvNet for the 2020s. CVPR 2022



ConvNeXt

GFLOPs
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BatchNorm — LayerNorm




ResNet-50/200
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ConvNeXt results

ImageNet-22K pre-trained models

e R-101x3 [39] 3842 388M 204.6G - 84.4

o R-152x4 [39] 480° 937M 840.5G - 85.4

image throughput IN-1K o EffNetV2-L [72] 480> 120M 53.0G  83.7 86.8

model size TPArAM- FLOPS (4 e /s)top-lace. o EffNetV2-XL[72] 480° 208M 940G 565 873
TmageNet- 1K trained models ViT-B/16 (=) [67] 384> 8IM 555G  93.1 85.4

o RegNetY-16G [54] 224° 84M 160G 334.7 82.9 VIT-L/16 (=) [67] 3847 305M 191.1G  28.5 86.8
e EffNet-B7 [71] 600> 66M 37.0G  55.1 84.3 o ConvNeXt-T 2247 29M  45G 7747 82.9
o EffNetV2-L [72] 480° 120M 53.0G  83.7 85.7 o ConvNeXt-T 384 29M 131G 2828 84.1
DeiT-S [73] 2247 22M  46G 9785 79.8 o ConvNeXt-S 2242 50M 8.7G  447.1 84.6
DeiT-B [73] 224 87M  17.6G  302.1 81.8 o ConvNeXt-S 384 50M 255G 163.5 85.8
Swin-T 224 28M 45G 7579 81.3 Swin-B 2247 88M 154G 286.6 85.2
o ConvNeXt-T 2242 29M  4.5G 7747 82.1 o ConvNeXt-B 2242 89M 154G 292.1 85.8
Swin-S 224 50M 879G 436.7 83.0 Swin-B 3842 88M 47.0G  85.1 86.4
o ConvNeXt-S 224 50M 8.7G  447.1 83.1 o ConvNeXt-B 3842 89M 451G 95.7 86.8
Swin-B 224 88M 154G 286.6 83.5 Swin-L 2242 197M 345G 145.0 86.3
o ConvNeXt-B 224 89M 154G 292.1 83.8 o ConvNeXt-L 224% 198M 344G 146.8 86.6
Swin-B 3842 88M  47.1G  85.1 84.5 Swin-L 3842 197M 103.9G  46.0 87.3
o ConvNeXt-B 384 89M 450G  95.7 85.1 o ConvNeXt-L 3842 198M 101.0G  50.4 87.5
o ConvNeXt-L 2247 198M 344G 146.8 84.3 eConvNeXt-XL  224° 350M 609G  89.3 87.0

o ConvNeXt-L 384 198M 101.0G  50.4 85.5 o ConvNeXt-XL 3847 350M 179.0G  30.2 87.8
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Universal Inverted Bottleneck

Universal IB block . . i Alternative
wi two optional DW Possible instantiations of our UIB block Fused IB
uiB Extra DW MobileNet ConvNext-Like FFN Fused IB

Inverted Bottleneck

Optional Depthwise DepthWise PointWise Conv2D

Qin et al. MobileNetV4 — Universal Models for the Mobile Ecosystem. arXiv:2404.105I8



Mobile MQA

Mobile  MQA(X) = Concat(attention;, ..., attention, ) W
(XWQ)(SR(X)WHK)T
Vi

) (SREOW)

where attention; = softmax <



MACTime; =

Roofline Latency vs Accuracy
RP: 0.00 MACs/byte - MACs

RP: 5.00 MACs/byte - Slow CPU

Roofline analysis

ModelTime = » " max(MACTime;, MemTime; )

LayerMACs;
PeakMACs ’

MemTime; =

WeightBytes,; + ActivationBytes,

PeakMemBW

RP: 50.00 MACs/byte - Fast CPU
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Roofline Ops (5.00 MACs/byte - Slow CPU)
MobileNetV1-1.5x - 76.7%

Roofline analysis

MobileNetV2-1.5x - 76.8%
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Roofline analysis

Ridge Point

Execution Target (MACs/B)|rs-Roofline|rs-MAC
Pixel 6 CPU (Int8) 31.2 0.973 0.962
Samsung Galaxy S23 CPU (Int8) 39.7 0.962 0.940
Pixel 4 DSP (Int8) 347.3 0.962 0.758
Pixel 8 EdgeTPU (Int8) 433.8 0.973 0.857
Roofline Latency vs Accuracy
RP: 31.20 MACs/byte RP: 39.70 MACs/byte RP: 347.30 MACs/byte RP: 433.80 MACs/byte
i 1 @ onovs
- MobileNetv3
MobieNetv2
© MobileNetvt
Arch
® conv

3 4567 10 20 304050 70 2 3 4567810 20 a040 2 3 456789 2 030405 0709 2 3 4
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Measured Latency vs Accuracy
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Found architectures

Table 12: Architecture specification of MNv4-Conv-M. Table 13: Architecture specification of MNv4-Hybrid-M.
Input | Block |DW Ki|DW K2|Expanded Dim|Output Dim|Stride Input | Block  |[DW K;|DW K;|Expanded Dim|Output Dim|Stride
2562 x 3| Comv2D | - | 3x3 | ~ | 39 | 2 256 x 3| Comnv2D | - | 3x3 | - | 32 | 2
> 1282 x 32| FusedIB | - | 3x3 | 128 | 48 | 2
128% x 32| FusedIB | - | 3x3 | 128 | 48 | 2
64 x 48 ExtraDW 3x3 5x5 192 80 2
642 x 48 | ExtraDW | 3 x 3 ‘ 5x5 | 192 ‘ 80 ‘ 2 322 x 80 | ExtraDW | 3x3 | 3x3 160 80 1
327 x 80 |ExtraDW| 3x 3 | 3x3 160 80 1 322 x 80 | ExtraDW | 3x3 | 5x5 480 160 2
o2 N . - N 16% x 160| ExtraDW x3 | 3x3 640 160 1
322 x 80 |ExtraDW| 3 x3 | 5x5 480 160 2 162 x 160| ExtraDW x3 | 3x3 640 160 1
162 x 160| ExtraDW| 3 x 3 | 3x3 640 160 1 162 % 160| ExtraDW | 3x3 | 5x5 640 160 1
162 x 160| ExtraDW | 3 x 3 3x3 640 160 1 16% x 160|Mobile-MQA = - - 160 1
16% x 160 ExtraDW | 3x3 | 5 x5 640 160 1 usz X 160| ExtraDW | 3x3 | 3x3 640 160 1
162 x 160| ExtraDW | 3x 3 | 3x 3 640 160 1 iﬁ? x ifg 1\1(“""‘0;\]“%/\ axs| - o iﬁ’g 1
2 : o 5 . 62 x 160| ConvNext | 3 x 2 - 54 6
167 x 160|ConvNext| 3 x 3 - 640 160 1 16 x 160|MobileMQA| ) . 160 B
16° x 160| FFN - - 320 160 1 162 % 160|  FFN B ) 610 160 1
162 x 160|ConvNext| 3 x 3 - 640 160 1 167 x 160|Mobile-MQA| - - R 160 1
2 162 x 160| ConvNext 3x3 - 640 160 1
162 x 160|ExtraDW| 5x5 | 5 x5 960 256 2 - -
82 x 256 |ExtraDW| 5x5 | 5x5 1024 1 ‘8‘; XZ“'“ E":"ﬂﬁtt[ 5x5 1‘?:2“4 i‘f f
2 orp ) . . . x ExtraDW 5x5 4 56
8 x Z‘r’(f ExtraDW 3x3 0 x 2 1024 oY 1 8% x 256 | ExtraDW 5x5 1024 256 1
87 X 256 | ExtraDW| 3x3 | 5x5 1024 256 1 ExtraDW 5x5 1024 256 N
8% x 256 FFN - - 1024 256 1 FFN 1024 256 1
82 x 256 |ConvNext| 3 x 3 - 1024 256 1 ConvNext 3 - 1024 256 1
82 x 256 |ExtraDW | 3x3 | 5x5 512 256 1 Mﬁszﬁ\g/\ 3[5x5 512 25:5 1
2 r ) RO - obile- - - - 56
87 x 2.{,9 ExtraDW| 5x5 | 5x5 1024 2.:(: 1 ot | 525 | 555 1021 it H
87 %256 | FFN - - 1024 256 1 Mobile-MQA| - A N 256 i
8% x 256 | FFN - - 1024 256 1 FFN - - 1024 256 1
82 x 256 |ConvNext| 5 x 5 - 512 256 1 Mobile-MQA| - - - 256 1
FFN - - 1024 256 1
82 x 256 | Conv2D - 1x1 - 960 1 Mobile-MQA| - - - 256 1
82 x 960 | AvgPool - 8x 8 - 960 1 ConvNext | 5x5 - 1024 256 1
2 N
1% X 960 | Conv2D - 1x1 - 1280 1 8% x 256 | ConvzD - 1x1 N 960 T
1% x 1280| Conv2D - 1x1 - 1000 1 8% x 960 | AvgPool - 8x8 - 960 1
1% x 960 Conv2D - 1x1 - 1280 1
12 x 1280 Conv2D - 1x1 - 1000 1
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Conclusion

We reviewed three key modern backbones:

I. Vision Transformer (ViT) applies ideas from NLP to images. Key
element is attention — mechanism for gathering information across
whole image

2. Swin Transformer reintroduces convnet priors to transformers using
shifted window attention

3. ConvNeXt modernizes ResNets into a transformer-like fully
convolutional architecture

4. MobileNetV4 combines ideas fromm CNNs and transformers and uses

NAS and Roofline Analysis to find fast architectures that works well
across various devices

25



	Vision Transformer
	Swin Transformer
	ConvNeXt
	MobileNetV4

