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Solution: Obtain extra examples after training

Some classification tasks may either have too many classes or in
the worst case, the set of classes may not be fixed ahead of time.

One possible workaround for this issue is to accept one (or a few)
example images for each new class at inference / evaluation time.

This approach is sometimes called
one-shot (or few-shot) learning.
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One-shot / few-shot learning
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Traffic signs
Russian Traffic Sign Images Dataset (RTSD)

105k images, 205 classes of which:
106 classes present in both train and test,
99 classes only available in the test set

Additionally, the authors provide multiple synthetic dataset
variants utilizing 3D CGI and generative networks for
traffic sign inpainting and stylization.

The proposed synthetic dataset generation methods are a
more advanced version of what you will be doing in the
next homework. Also, check the paper author list below.

Konushin, Faizov, Shakhuro. Road images augmentation with synthetic traffic signs using neural networks. Computer Optics 2021
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Retail products

2000 Retail Product Dataset (RP2k)

10k shelf images,
350k individual product images,

2k different products types

Shelf images collected from 500 stores across 10
cities, extra annotations including product name,
brand, type, shape, size and flavour are available

Peng et al. RP2K: A Large-Scale Retail Product Dataset for Fine Grained Image Classification. arXiv 2006
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Humans silhouette re-identification

Multi-Scene Multi-Time Person ReID Dataset (MSMT17)

126k bounding boxes,
4k different individuals,
very high data diversity

Collected from 15 different cameras,
over 4 different days in a month,
during 3 different hour intervals

Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018
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Human face recognition

Labeled Faces in the Wild Dataset (LFW)

13k face images, 5k different individuals

Images automatically collected from news
photographs. Detect, crop and rescale each face
(multiple per image). Manually annotate each face,
referencing original news captions.

Originally contained train and test splits, but
currently often used purely as a testing dataset

Huang et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report 2008
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Human face recognition

WebFace42M Dataset (WF42M)

42M face images, 2M different individuals

First, semi-automatically collect celebrity names from
Freebase, IMDB, etc. Then, scrape images from the
internet by using search engines (Google, Bing). Finally,
thoroughly clean the data.

There is also a 260M version of the dataset, but it contains
raw low quality images with a lot of annotation errors, so
almost no one uses it.

Zhu et al. WebFace260M: A Benchmark for Million-Scale Deep Face Recognition. TPAMI 2022
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Near-duplicates
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Image search / retrieval

Oxford Landmarks Dataset (Oxford5k)

5k images with Oxford landmarks,
1024×768 resolution

100K and 1M distractor images

Test queries: 5 images per each of 11
landmarks

Philbin et al. Object retrieval with large vocabularies and fast spatial matching. CVPR 2007
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Image search / retrieval

Google Landmarks Dataset (GLDv2)

762k index images, 4.1M train
images, 200k landmarks

Sourced from Wikimedia,
semi-automatic relabelling,
800 human hours

Test queries: 118k images

Weyand et al. Google Landmarks Dataset v2. CVPR 2020
15
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Face Recognition

For simplicity, we will assume Face Recognition (FR) as the
default domain for the rest of the lecture, unless stated otherwise.

Most of the metrics, methods and other details discussed here apply
equally well to other domains. The names and exact formulations

of some metrics might differ from domain to domain.

The names of some metric learning methods include explicit references to
“Faces”, but none of these methods are actually FR-specific.

They are widely used in all discussed domains.
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Verification (1:1)

Equivalent pseudo-classification task:
Are these two images of the same person?
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Verification (1:1)

Which FR verification applications are you familiar with?

• unlocking your phone or laptop
• two-factor authentication in banks or government offices
• visa / passport self-verification kiosks on the border
• pay-by-face (but only as a second factor)
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Identification (1:N)

Equivalent pseudo-classification task:
Given a single query image and an enrollment database of 𝑁 images,

determine if the person in the query image is present in the database.
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Identification (1:N)

Which FR identification applications are you familiar with?

• white or allow list
• intercom for residents or entry to restricted / staff-only area
• pay-by-face (hands free, without your credit card or phone)

• black or deny list
• law enforcement investigations (“that’s Jason Bourne”)

• open or dynamic list, re-identification
• customer journey analysis
• crowd congestion control
• traffic metrics
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Identification (1:N)

Cooperative vs Passive vs Uncooperative
• is the head oriented straight towards the camera?
• is the subject looking at the camera, are their eyes open?
• is the face fully inside the image frame or is it cropped?
• is the face occluded by something (sunglasses, scarf, mask)?

Identification (1:N) is usually cooperative for white list, uncooperative for black list
and passive for open list. Verification (1:1) is almost always cooperative.
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Classification metrics

Positive ≈ Match ≈ Acceptance
Negative ≈ Non-Match ≈ Rejection

⇒
⇒

FPR = FMR = FAR ≠ FPIR
FNR = FNMR = FRR ≠ FNIR
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False Positive / Negative Identification Rate

FPIR and FNIR depend on database size (larger DB → harder task)
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Trade-off curves (𝑉1 vs 𝑉2)
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Single point metrics (𝑉1@𝑉2=const)
Evaluate any of the mentioned trade-off curves at a single point.
For example:
• TPR@FPR=10−4

• FNIR@Rank=10
• Recall@Rank=10
• etc

This approach makes sense, if the value we are fixing represents a realistic
use case for the algorithm. So in the above examples, we are checking the
performance of our algorithms under the assumption that we can tolerate
1 in 10,000 false positive results (FPR=10−4) or that the user is willing to
investigate the top 10 candidates suggested by our algorithms (Rank=10).
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Integrated metrics ( ∫𝑉1 d𝑉2 )

Area Under Curve

• ROC AUC
(sometimes called just “AUC”)

• Precision-Recall AUC
(sometimes “AUPRC”)

Averaged

• Average Precision

• Average of any
“Single point metric”
at multiple points

26



Integrated metrics ( ∫𝑉1 d𝑉2 )
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Hierarchy of methods
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Perceptual hashing methods

Hand crafted “classical CV” methods. Simple transformations are applied
to the images in order to discard perceptually unimportant information
(similar to compression algorithms). In the end, the image is reduced to a
sequence of bits called its “perceptual hash”.

Generally outside the scope of the course. For the curious students, this
blog covers a couple of the simpler methods:
https:///wwwww.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html

https:///wwwww.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

29



Hierarchy of methods
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General metric learning inference pipeline

1. Extract Descriptors
aka Embeddings

2. Calculate Scores
aka Similarities, aka Distances

3. Search in Database
aka Gallery

31



Outline

1. Introduction
1.1. Domains and datasets
1.2. Evaluation and metrics

2. Metric learning methods
2.1. Sample-based methods
2.2. Proxy-based methods

3. Efficient searching

32



Siamese networks

Bromley, LeCun et al. Signature verification using a Siamese time delay neural network. NeurIPS 1993
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Naive idea: Pull positive pairs, Push negative pairs

𝐿 =
⎧
⎨
⎩

‖𝑓𝑖 − 𝑓𝑗‖
2

2
if 𝑦𝑖 = 𝑦𝑗,

−‖𝑓𝑖 − 𝑓𝑗‖
2

2
otherwise.
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Pairwise contrastive loss

Idea: Sample an equal number of positive and negative
pairs of samples and compute the following loss:

𝐿 =
⎧
⎨
⎩

‖𝑓𝑖 − 𝑓𝑗‖
2

2
if 𝑦𝑖 = 𝑦𝑗,

max(0,𝑚 − ‖𝑓𝑖 − 𝑓𝑗‖2
)
2

otherwise.

Hadsell, Chopra, LeCun. Dimensionality Reduction by Learning an Invariant Mapping. CVPR 2005
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Pairwise contrastive loss

Hadsell, Chopra, LeCun. Dimensionality Reduction by Learning an Invariant Mapping. CVPR 2005
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Separability criterion

∀ 𝑓𝑎, 𝑓𝑝, 𝑓𝑛 ∶

‖𝑓𝑎 − 𝑓𝑝‖
2
2

< ‖𝑓𝑎 − 𝑓𝑛‖
2
2

Schroff et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015
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Triplet loss

During training, for each anchor, choose the hardest positive and negative sample.
In particular, choose 𝑝 with the maximum distance and 𝑛 with the minimum distance.

𝐿 = max(0, ‖𝑓𝑎 − 𝑓𝑝‖
2

2
+𝑚 − ‖𝑓𝑎 − 𝑓𝑛‖

2
2)

Schroff et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015
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Big problem with sample-based methods

Face Recognition datasets can have 1M+ identities and 100M+ images.

What are the chances that a randomly sampled (or even somewhat smartly selected)
batch will contain negative samples that are close/relevant to the chosen anchors?

Sample-based methods rely heavily on good sampling
in order to model the whole target embedding space.

The complexity of the structure of the embedding space grows
with the number of identities/labels that we want to distinguish.

38
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Why shouldn’t we just train a classifier?

Where 𝑤𝑖 is the prototype or centroid of the 𝑖th class or identity
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Is dot product a metric?

𝑥𝑇𝑦 = ⟨𝑥, 𝑦⟩ = ‖𝑥‖2 ‖𝑦‖2 cos (∠𝑥𝑦)

Close, but not quite. Negative dot product −⟨𝑥, 𝑦⟩ behaves kind of like a metric
(smaller values ⇔ closer vectors), but it doesn’t actually satisfy all the required axioms.

In particular, for any non-zero x and y, you can always arbitrarily increase / decrease
⟨𝑥, 𝑦⟩ by increasing / decreasing the magnitude of ‖𝑥‖2 or ‖𝑦‖2.
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Cosine similarity

This issue can be fixed by applying 𝐿2 normalization to both vectors.
The resulting quantity is called the cosine similarity.

c (𝑥, 𝑦) =
𝑥𝑇𝑦

‖𝑥‖2 ‖𝑦‖2
= cos (∠𝑥𝑦)
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Yann LeCun knew this in 1993

Bromley, LeCun et al. Signature verification using a Siamese time delay neural network. NeurIPS 1993
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Cosine distance

Cosine “distance” d (𝑥, 𝑦) = 2 − 2 c (𝑥, 𝑦) is technically still not a valid
distance metric, but you can prove that optimizing c (𝑥, 𝑦) is equivalent to
optimizing ‖𝑥 − 𝑦‖22, with 𝑥 and 𝑦 constrained to the unit hypersphere.

The proof of this fact is left as an exercise to the listener.
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SphereFace, CosFace

𝐿 = −log⎛⎜⎜

⎝

𝑒𝑠⋅(c(𝑓𝑖, 𝑤𝑦𝑖
)−𝑚)

𝑒𝑠⋅(c(𝑓𝑖, 𝑤𝑦𝑖
)−𝑚) + ∑

𝑗≠𝑦𝑖
𝑒𝑠⋅c(𝑓𝑖, 𝑤𝑗)

⎞⎟⎟

⎠
𝑚 ∼ 0.35

Liu et al. SphereFace: Deep Hypersphere Embedding for Face Recognition. CVPR 2017
Wang et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition. CVPR 2018
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SphereFace, CosFace

Softmax
Classifier

Softmax
Normalized

CosFace
with Margin

Liu et al. SphereFace: Deep Hypersphere Embedding for Face Recognition. CVPR 2017
Wang et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition. CVPR 2018

45



𝑥Face

𝐿 = −log⎛⎜⎜

⎝

𝑒𝑠⋅T(𝜃𝑦𝑖)

𝑒𝑠⋅T(𝜃𝑦𝑖) + ∑
𝑗≠𝑦𝑖

𝑒𝑠⋅c(𝑓𝑖, 𝑤𝑗)

⎞⎟⎟

⎠

where 𝜃𝑗 = arccos (c (𝑓𝑖, 𝑤𝑗))

Zhang et al. Unifying Margin-Based Softmax Losses in Face Recognition WACV 2023 46



𝑥Face, 𝑥 ∈ {Sphere,Cos,Arc,Amp}

T (𝜃) = 𝑚0 ⋅ cos (𝑚1 ⋅ 𝜃 + 𝑚2) − 𝑚3

SphereFace: 𝑚1 ∼ 1.35

CosFace: 𝑚3 ∼ 0.35

ArcFace: 𝑚2 ∼ 0.5

AmpFace: 𝑚0 ∼ 0.375

Zhang et al. Unifying Margin-Based Softmax Losses in Face Recognition WACV 2023
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Big problem with sample-based methods

Face Recognition datasets can have 1M+ identities and 100M+ images.

What are the chances that a randomly sampled (or even somewhat smartly selected)
batch will contain negative samples that are close/relevant to the chosen anchors?

Sample-based methods rely heavily on good sampling
in order to model the whole target embedding space.

The complexity of the structure of the embedding space grows
with the number of identities/labels that we want to distinguish.
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Even bigger problem with proxy-based methods
Let’s estimate the size of the weight/centroid/prototype matrix 𝑊 and the logits tensor 𝑂:

𝑊 ∈ ℝ𝐶×𝐸, 𝑂 ∈ ℝ𝐵×𝐶

even for somewhat small values of
𝐶 ∼ 1M, 𝐸 ∼ 1024, 𝐵 ∼ 1024, we get

sizeof(𝑊) = 𝐶 ⋅ 𝐸 ⋅ sizeof(fp32) ∼ 4GB

sizeof(𝑂) = 𝐵 ⋅ 𝐶 ⋅ sizeof(fp32) ∼ 4GB

Additionally, the following tensors may require similarly sized allocations:
• intermediate computations involving 𝑂 during the forward pass
• intermediate computations involving 𝑑𝐿

𝑑𝑂 during the backward pass
• gradient storage/accumulator for 𝑑𝐿

𝑑𝑊 during the backward pass
• storage for additional optimizer state for 𝑊 (e.g. exp_avg and exp_avg_sq for Adam)

And that is not counting the memory requirements for training the extractor model itself!
49



Comparison on Megaface benchmark

50



A metric learning reality check

Musgrave et al. A metric learning reality check. ECCV 2020
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Beware of pretty plots
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Unfair comparisons

𝐿 = max(0, ‖𝑓𝑎 − 𝑓𝑝‖
2

2
+𝑚 − ‖𝑓𝑎 − 𝑓𝑛‖

2
2)

𝐿 = −log⎛⎜⎜

⎝

𝑒𝑠⋅(c(𝑓𝑖, 𝑤𝑦𝑖
)−𝑚)

𝑒𝑠⋅(c(𝑓𝑖, 𝑤𝑦𝑖
)−𝑚) + ∑

𝑗≠𝑦𝑖
𝑒𝑠⋅c(𝑓𝑖, 𝑤𝑗)

⎞⎟⎟

⎠
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Inverted index

Construction: use k-means to divide
images into K clusters. K centroids
(codewords) form a codebook. Store K
lists with image ids in RAM

Search: given a query, find several
nearest codewords. List all elements in
resp. clusters

Drawbacks?
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Product quantization

Construction: divide vector into m
parts, encode each subvector with
k-means

Usually 𝑘∗ = 256 (1 byte code per subvector)

Comparison with k-means
Memory and search complexity:

𝑘𝐷 vs 𝑚𝑘∗𝐷∗ = 𝑘1/𝑚𝐷

because 𝐷 = 𝑚𝐷∗ and 𝑘 ≈ 𝑘𝑚
∗

(assuming subvectors are independent)
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Distance computation in PQ method

‖𝑥 − 𝑦‖2 ≈ ‖𝑥 − [𝑞1(𝑦),… , 𝑞𝑚(𝑦)]‖
2 =

𝑚
∑
𝑖=1

‖𝑥𝑖 − 𝑞𝑖(𝑦)‖
2
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Hierarchical Navigable Small World

Rough complexity estimates

Search in O(log𝑁)
Construct in O(𝑁 log𝑁)
Memory: 60-450 bytes/object

Malkov, Yashunin. Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small
World graphs. TPAMI 2018
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Overall method
1. Compute inverted index with large K = 220

2. In each cluster encode residual vectors with PQ
3. Use HNSW to choose clusters during search

Baranchuk et al. Revisiting the inverted indices for billion-scale approximate nearest neighbors. ECCV 2018
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Conclusion

We reviewed following topics:
• pseudo-classification tasks across different domains
• relevant practical applications and metrics
• sample-based and proxy-based metric learning methods
• several approximate nearest neighbour methods for faster

search and indexing in metric representation spaces

61


	Introduction
	Domains and datasets
	Evaluation and metrics

	Metric learning methods
	Sample-based methods
	Proxy-based methods

	Efficient searching

