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Solution: Obtain extra examples after training

Some classification tasks may either have too many classes or in
the worst case, the set of classes may not be fixed ahead of time.

One possible workaround for this issue is to accept one (or a few)
example images for each new class at inference / evaluation time.

This approach is sometimes called
one-shot (or few-shot) learning.



One-shot / few-shot learning

&
Note:

Test Dataset and Example Image
may contain classes not present

Train
Dataset in the Train Dataset
Does eachtest image
Test contain
Dataset Leonardo DiCaprio?

Example Leonardo _ !
Image DiCaprio
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Traffic signs
Russian Traffic Sign Images Dataset (RTSD)

|05k images, 205 classes of which:
|06 classes present in both train and test,
99 classes only available in the test set

Additionally, the authors provide multiple synthetic dataset
variants utilizing 3D CGIl and generative networks for
traffic sign inpainting and stylization.

The proposed synthetic dataset generation methods are a
more advanced version of what you will be doing in the
next homework. Also, check the paper author list below.

Konushin, Faizov, Shakhuro. Road images augmentation with synthetic traffic signs using neural networks. Computer Optics 202I



Retail products

2000 Retail Product Dataset (RP2k)

10k shelf images, Shelf images collected from 500 stores across 10
350k individual product images, cities, extra annotations including product name,
2k different products types brand, type, shape, size and flavour are available

Peng et al. RP2K: A Large-Scale Retail Product Dataset for Fine Grained Image Classification. arXiv 2006



Humans silhouette re-identification

Multi-Scene Multi-Time Person RelD Dataset (MSMT 17)

FITTL

lighting changes scene and background chanes'

; I E 1~~).

pose variations occlusions

126k bounding boxes, Collected from 15 different cameras,
4k different individuals, over 4 different days in a month,
very high data diversity during 3 different hour intervals

Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-ldentification. CVPR 2018



Human face recognition

Labeled Faces in the Wild Dataset (LFW)

WARY
I 13k face images, 5k different individuals
- b
N Images automatically collected from news
& ¢ photographs. Detect, crop and rescale each face
g % | (multiple per image). Manually annotate each face,
| Pl

referencing original news captions.
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Orriginally contained train and test splits, but
currently often used purely as a testing dataset

Huang et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report 2008



Human face recognition

WebFace42M Dataset (WF42M)

42M face images, 2M different individuals

First, semi-automatically collect celebrity names from
Freebase, IMDB, etc. Then, scrape images from the
internet by using search engines (Google, Bing). Finally,
thoroughly clean the data.

There is also a 260M version of the dataset, but it contains
raw low quality images with a lot of annotation errors, so
almost no one uses it.

Zhu et al. WebFace260M: A Benchmark for Million-Scale Deep Face Recognition. TPAMI 2022
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Image search / retrieval

Oxford Landmarks Dataset (Oxford5k)

5k images with Oxford landmarks,
1024 X 768 resolution

00K and IM distractor images

Test queries: 5 images per each of |l
landmarks

Philbin et al. Object retrieval with large vocabularies and fast spatial matching. CVPR 2007



Image search / retrieval

Google Landmarks Dataset (GLDv2)

ey ,|“_“'- 4» 762k index images, 4.1 M train
i S LR <

\_’;ﬁ‘

v images, 200k landmarks

Gt %s l '”wmﬁ Sourced from Wikimedia,

semi-automatic relabelling,
800 human hours

Test queries: 118k images

Weyand et al. Google Landmarks Dataset v2. CVPR 2020
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Face Recognition

For simplicity, we will assume Face Recognition (FR) as the
default domain for the rest of the lecture, unless stated otherwise.

Most of the metrics, methods and other details discussed here apply
equally well to other domains. The names and exact formulations
of some metrics might differ from domain to domain.

The names of some metric learning methods include explicit references to
“Faces”, but none of these methods are actually FR-specific.
They are widely used in all discussed domains.



Verification (1:1)

Equivalent pseudo-classification task:
Are these two images of the same person?
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Which FR verification applications are you familiar with?




Verification (1:1)

Which FR verification applications are you familiar with?
® unlocking your phone or laptop
® two-factor authentication in banks or government offices
® visa / passport self-verification kiosks on the border

® pay-by-face (but only as a second factor)



|dentification (1:N)

BEEEI

Equivalent pseudo-classification task:

Given a single query image and an enrollment database of N images,

determine if the person in the query image is present in the database.
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Identlf cation (I: N)

Which FR identification applications are you familiar with?
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Identn“ catlon (1:N)

Which FR identification applications are you familiar with?

® white or allow list
* intercom for residents or entry to restricted / staff-only area
* pay-by-face (hands free, without your credit card or phone)
® black or deny list
* law enforcement investigations (“that’s Jason Bourne”)

® open or dynamic list, re-identification
® customer journey analysis
® crowd congestion control
* traffic metrics

2l



|dentification (1:N)

Cooperative vs Passive vs Uncooperative
® is the head oriented straight towards the camera?
® is the subject looking at the camera, are their eyes open?
® s the face fully inside the image frame or is it cropped?
® s the face occluded by something (sunglasses, scarf, mask)?

Identification (1:N) is usually cooperative for white list, uncooperative for black list
and passive for open list. Verification (1:1) is almost always cooperative.

2l
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Classification metrics

Predicted condition

Total population

P+N

5 Positive True Positive False Negative
% P TP FN
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% Negative False Positive True Negative
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Precision
TP
TP+ TP

Positive ~ Match ~ Acceptance
Negative ~ Non-Match ~ Rejection

Predicted Positive  Predicted Negative

=
=

True Positive Rate, False Negative Rate
Recall, Sensitivity
vy EN
TPR=7=1-FNR FNR=73"=1-TPR

False Positive Rate True Negative Rate,
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False Positive / Negative ldentification Rate

Negative Probes Positive Probes
(#matches = 0) 3 (#matches = 1) N3
calculate FPIR . calculate FNIR

FPIR and FNIR depend on database size (larger DB — harder task)

B (ke




Trade-off curves (V, vs V)

Receiver Operating Characteristic (ROC) curves

TPR
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Trade-off curves (V, vs V)

Detection Error Tradeoff (DET) curves
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Trade-off curves (V, vs V)

Precision-Recall (PR) curves
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Trade-off curves (V, vs V)

Recall at each rank (Recall@Rank) curves
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Single point metrics (V,; @V,=const)

Evaluate any of the mentioned trade-off curves at a single point.
For example:

e TPR@FPR=10"*
¢ FNIR@Rank=10
® Recall@Rank=10
® etc

This approach makes sense, if the value we are fixing represents a realistic
use case for the algorithm. So in the above examples, we are checking the
performance of our algorithms under the assumption that we can tolerate
| in 10,000 false positive results (FPR=10"%) or that the user is willing to
investigate the top |0 candidates suggested by our algorithms (Rank=10).

25



Integrated metrics ( [V, dV, )

Area Under Curve Averaged

e ROC AUC * Average Precision

(sometimes called just “AUC”) e Average of any

® Precision-Recall AUC “Single point metric”
(sometimes “AUPRC”) at multiple points

26



Integrated metrics ( [V, dV,)

Receiver Operating Characteristic (ROC) curves

TPR
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Integrated metrics ( [V, dV,)
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Hierarchy of methods

Representation
Learning

28



Hierarchy of methods

Representation

Learning
Similarity
Learning

28



Hierarchy of methods

Representation
Learning

I

Similarity
Learning

l

Unsupervised
Representation
Learning

28



Hierarchy of methods

Representation
Learning

I

Similarity
Learning

l

l—l

Perceptual
Hashing
Methods

Unsupervised
Representation
Learning

28



Perceptual hashing methods

Hand crafted “classical CV” methods. Simple transformations are applied
to the images in order to discard perceptually unimportant information
(similar to compression algorithms). In the end, the image is reduced to a
sequence of bits called its “perceptual hash”.

Generally outside the scope of the course. For the curious students, this
blog covers a couple of the simpler methods:
https://ww.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://ww.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

29
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General metric learning inference pipeline

I. Extract Descriptors 2. Calculate Scores 3. Search in Database

aka Embeddings aka Similarities, aka Distances aka Gallery

DB

Enrolled Data Identity Info

Descriptor 1 Probe Descriptor
Descriptor 2

- 1@ . Candidates
Descriptor2 —  ______ i—[>. 5 : nd Scores

‘ I 128
: 1024 { Threshold > - :
| I SEED

()

Descriptor 1

Auxiliary Structures

(optional) E
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Siamese networks

TARGET

DISTANCE
HEAsRE Signature
Feature Vector

one feature voctor:
outputs of different

featvres | (3
e —
et 2 TS

‘same unit repeated
along the time axis

[ PREPROCESSING | [PREPROCESSING |

b Brom T Frwm

Bromley, LeCun et al. Signature verification using a Siamese time delay neural network. NeurIPS 1993
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Naive idea: Pull positive pairs, Push negative pairs

| sl =
_Hfl_j;”j otherwise.



Pairwise contrastive loss

Idea: Sample an equal number of positive and negative
pairs of samples and compute the following loss:

i=fl, fyi=y

f; —]§.H2)2 otherwise.

max (O, m —

Hadsell, Chopra, LeCun. Dimensionality Reduction by Learning an Invariant Mapping. CVPR 2005
35



Pairwise contrastive loss

3.5

251 2

Loss (L)
.

}argin: m

1.25
Energy (Ew)

Hadsell, Chopra, LeCun. Dimensionality Reduction by Learning an Invariant Mapping.

CVPR 2005
35



Separability criterion

v fa: fpa fn :

l£ =5l < g = fill3

Schroff et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015
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Separability criterion

v fa: fpa fn :

1= 5l +m < 11 = £ull3

Schroff et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015
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Triplet loss

During training, for each anchor, choose the hardest positive and negative sample.
In particular, choose p with the maximum distance and n with the minimum distance.
Negative

Anchor LEARNING
Negative
()

Anchor -
Positive Positive

L= max(0, [I£,~ [, +m - It~ £11)

Schroff et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015
37



Big problem with sample-based methods

Face Recognition datasets can have | M+ identities and 100M+ images.

What are the chances that a randomly sampled (or even somewhat smartly selected)
batch will contain negative samples that are close/relevant to the chosen anchors?

Sample-based methods rely heavily on good sampling

in order to model the whole target embedding space.
The complexity of the structure of the embedding space grows
with the number of identities/labels that we want to distinguish.

38
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Why shouldn’t we just train a classifier?

Conventional Classifier

|

sainjea
subo ssepd

[
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Why shouldn’t we just train a classifier?

Conventional Classifier

saunjesd

Where w, is the prototype or centroid of the ith class or identity

40



Is dot product a metric?

xty = (x, y) = lIxlly [ly]l, cos (£xy)

Close, but not quite. Negative dot product —(x, y) behaves kind of like a metric
(smaller values < closer vectors), but it doesn’t actually satisfy all the required axioms.

In particular, for any non-zero x and y, you can always arbitrarily increase / decrease
(x, y) by increasing / decreasing the magnitude of ||x]|, or ||y/l,.

4



Cosine similarity

This issue can be fixed by applying L, normalization to both vectors.

The resulting quantity is called the cosine similarity.

T

c(x, y)= = cos (£xYy)

I, ||J’||2

42



Yann LeCun knew this in 1993

The desired output is for a small angle between the outputs of the two
subnetworks (f; and f») when two genuine signatures are presented, and a large
angle if one of the signatures is a forgery. For the cosine distance used here:

(f1- f2)/(|f1ll f2])

the desired outputs were 1.0 for a genuine pair of signatures and —0.9 or —1.0 for
the second case.

Bromley, LeCun et al. Signature verification using a Siamese time delay neural network. NeurIPS 1993

43



Cosine distance

Cosine “distance” d (x, y) =2 — 2c(x, y) is technically still not a valid
distance metric, but you can prove that optimizing c (x, y) is equivalent to
optimizing ||x — y||%, with x and y constrained to the unit hypersphere.

The proof of this fact is left as an exercise to the listener.

44



SphereFace, CosFace

() m)

L=-lo
e Gom)m) 4 5 goeliom)
J#Yi

m ~ 0.35

Liu et al. SphereFace: Deep Hypersphere Embedding for Face Recognition. CVPR 2017
Wang et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition. CVPR 2018

45



SphereFace, CosFace

Softmax Softmax CosFace

Classifier Normalized with Margin
cos(0,) cos(6,)A cos(6,)A

G| .7 G I
] o ho
cos(e) cos(0,) < ™| cos(6,)
’/' C1 ’l‘ C"

margin<0 margin=0 margin>0

Liu et al. SphereFace: Deep Hypersphere Embedding for Face Recognition. CVPR 2017
Wang et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition. CVPR 2018
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xFace

es-T(Qyi)
L = —log
eS'T(Qyi) + Y es-c(fi,wj)
J#Yi
where 0, = arccos (c (ﬁ, Wj))

Zhang et al. Unifying Margin-Based Softmax Losses in Face Recognition WACV 2023
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xFace, x € {Sphere, Cos, Arc, Amp }

T(0) =m,-cos(m; -0 +m,)—my

SphereFace: m; ~ 1.35 ArcFace: m, ~ 0.5

CosFace: my; ~ 0.35 AmpFace: m; ~ 0.375

Zhang et al. Unifying Margin-Based Softmax Losses in Face Recognition WACV 2023

47



Big problem with sample-based met

Face Recognition datasets can have | M+ identities and 100M+

What are the chances that a randomly sampled (or even somewhat si zted)
batch will contain negative samples that are close/relevant to thech 1ai.  rs?

Sample-based methods rely heavily on good sampling

in order to model the whole target embedding space.
The complexity of the structure of the embedding space grows
with the number of identities/labels that we want to distinguish.
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Even bigger problem with proxy-based methods

Let’s estimate the size of the weight/centroid/prototype matrix W and the logits tensor O:
m We RCXE 0c RBXC

even for somewhat small values of
C ~ 1M, E ~ 1024, B ~ 1024, we get

sizeof(W) = C - E - sizeof(fp32) ~ 4GB

s1bo7 ssed

sizeof(O) = B - C - sizeof(fp32) ~ 4GB

L

Additionally, the following tensors may require similarly sized allocations:

® intermediate computations involving O during the forward pass

® intermediate computations involving g—é during the backward pass

® gradient storage/accumulator for f—ﬁ, during the backward pass

® storage for additional optimizer state for W (e.g. exp_avg and exp_avg_sq for Adam)

And that is not counting the memory requirements for training the extractor model itself!



Comparison on Megaface benchmark

Methods 1d (%) | Ver (%)

Softmax [15] 54.85 65.92
Contrastive Loss[ 15, 30] 65.21 78.86
Triplet [15, 27] 64.79 78.32
Center Loss[36] 65.49 80.14
SphereFace [15] 72.729 | 85.561
CosFace [35] 77.11 89.88
AM-Softmax [33] 7247 84.44

SphereFace+ [ 14] 73.03 -

CASIA, R50, ArcFace 77.50 92.34
CASIA, R50, ArcFace, R 91.75 93.69
FaceNet [27] 70.49 86.47
CosFace [35] 82.72 96.65
MS1MV2, R100, ArcFace 81.03 96.98
MS1IMV2, R100, CosFace 80.56 96.56
MSIMV2, R100, ArcFace, R | 98.35 98.48
MS1IMV2, R100, CosFace, R | 97.91 97.91

Table 6. Face identification and verification evaluation of different
methods on MegaFace Challengel using FaceScrub as the probe
set. “Id” refers to the rank-1 face identification accuracy with IM
distractors, and “Ver” refers to the face verification TAR at 10~¢
FAR. “R” refers to data refinement on both probe set and 1M dis-
tractors. ArcFace obtains state-of-the-art performance under both
small and large protocols.



A metric learning reality check
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Beware of pretty plots
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L=max(0, [~ 1,2+ m— 15, £ )

A

Unfair comparisons

A
A A negative
o o 4 *
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Smooth-AP OneFace
In Defense of the Triplet Loss
TransFace
AnchorFaceEntropy- gu1é§d Hard Sample Mining
Pairwise Similarity Learning is SimPLE

Consistent Instance False Positive

Sampling Matters
SphereFace2
Hidden Pitfalls of the Cosine Similarity

Multi-Similarity
Discrepancy Alignment Metric

Tuplet Margin UniTSFace
Lifted Structured Feature Embedding
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Inverted index

Construction: use k-means to divide
images into K clusters. K centroids
(codewords) form a codebook. Store K
lists with image ids in RAM

Search: given a query, find several
nearest codewords. List all elements in
resp. clusters
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Inverted index

Construction: use k-means to divide
images into K clusters. K centroids
(codewords) form a codebook. Store K
lists with image ids in RAM

Search: given a query, find several
nearest codewords. List all elements in

resp. clusters

Drawbacks?
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Product quantization

Construction: divide vector into m
parts, encode each subvector with

D k-means
X \\ \ USU&”)’ k* = 256 (I byte code per subvector)
/ / \ Comparison with k-means
Y L\\\‘“N E\\%N K\ Memory and search complexity:
e % .p kD vs mk,D, = k™D

because D = mD, and k ~ k,"

(assuming subvectors are independent)



Distance computation in PQ method

symmetric case asymmetric case

lx = y|I> = |lx = [q, (), -, 4O = ) Mlx; — ¢, ||
i=1

58



Hierarchical Navigable Small World

entry point

nearest neighboy e
vy vector

Malkov, Yashunin. Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small
World graphs. TPAMI 2018
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Hierarchical Navigable Small World

entry point

Rough complexity estimates

Search in O(log N)
Construct in O(Nlog N)
Memory: 60-450 bytes/object

nearest neighboy e
vy vector

Malkov, Yashunin. Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small
World graphs. TPAMI 2018
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Overall method

l. Compute inverted index with large K = 22°
2. In each cluster encode residual vectors with PQ
3. Use HNSW to choose clusters during search

DEEPIB SIFT1B
Method K |RQI [RQIO[R@QI00[ t [Mem| R@I [R@IO[R@QIO00[ t [Mem
O-Multi-D-OADC[24][2"*]0.397 [ 0.766 | 0.909 |8.5]17.34]0.360]0.792] 0.901 | 5 |17.34
Multi-LOPQ[4] |2 0.41 | 0.79 | - [20]18.68]/0.454]0.862| 0.908 | 19 [19.22
GNOIMI[5] 2'%10.45 | 0.81 - |20(19.75] - - - - -
IVFOADC+G+P [2°°]0.452|0.832|0.947 [3.3[17.87]0.405 | 0.851 | 0.957 [3.5| 18

Table 4. Comparison to the previous works for 16-byte codes. The search runtimes
are reported in milliseconds. We also provide the memory per point required by the
retrieval systems (the numbers are in bytes and do not include 4 bytes for point ids).

Baranchuk et al. Revisiting the inverted indices for billion-scale approximate nearest neighbors. ECCV 2018




Conclusion

We reviewed following topics:
¢ pseudo-classification tasks across different domains
* relevant practical applications and metrics
® sample-based and proxy-based metric learning methods

* several approximate nearest neighbour methods for faster
search and indexing in metric representation spaces

6l
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