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One-class object detection

Find all objects of a fixed class in an
image. Output a set of bounding
boxes:

{(𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖)}
𝑁
𝑖=1

Instead of bboxes may also use:
• rotated bboxes
• ellipses
• pixel mask
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Multiclass object detection

Find all objects of a fixed set of
classes in an image. Output a set of
bounding boxes with classes:

{(𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖, 𝑐𝑖)}
𝑁
𝑖=1

N.B. we aim to find things (people,
cars), not stuff (sky, road)
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MS COCO dataset

200k images, 80 classes, 500k objects with masks

Lin et al. Microsoft COCO: Common Objects in Context. ECCV 2014
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LVIS labelling for COCO

Additional fine labelling for COCO
> 1000 object classes
2�M object masks

Gupta et al. LVIS: A Dataset for Large Vocabulary Instance Segmentation. CVPR 2019
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IoU matching criterion

Detection is correct if IoU > p (i.e. 0.5)
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Computing precision and recall

Match predicted bboxes with ground
truth bboxes using predicted confidences
to compute TP, FP, FN

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Precision-Recall curve❋❛❝❡ ❞❡t❡❝t✐♦♥ ✇✐t❤♦✉t ❜❡❧❧s ❛♥❞ ✇❤✐st❧❡s ✺
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❋✐❣✉r❡ ✸✿ Pr❡❝✐s✐♦♥✲r❡❝❛❧❧ ❝✉r✈❡s ♦❢ t❤❡ ❞✐✛❡r❡♥t ❡✈❛❧✉❛t✐♦♥ ♠❡t❤♦❞s ♦♥ P❛s❝❛❧✳
✭❛✮ ❙❤♦✇s t❤❡ ❡✈❛❧✉❛t✐♦♥ ❜❛s❡❞ ♦♥ t❤❡ ♣r❡✈✐♦✉s ❛♥♥♦t❛t✐♦♥s✱ ♥♦t ❝♦♠♣❡♥s❛t✐♥❣
❞✐✛❡r❡♥t ❣✉✐❞❡❧✐♥❡s✳ ✭❜✮ ❚r❛♥s❢♦r♠s t❤❡ ❞❡t❡❝t✐♦♥s t♦ r❡✢❡❝t t❤❡ t❡st s❡t ❛♥♥♦✲
t❛t✐♦♥ ♣♦❧✐❝②✳ ✭❝✮ ●r❡❡♥ ❛♥❞ ②❡❧❧♦✇ ❜♦①❡s s❤♦✇ ❞✐✛❡r❡♥t ❛♥♥♦t❛t✐♦♥✴❞❡t❡❝t✐♦♥
♣♦❧✐❝✐❡s✳ ❚❤❡ ❣r❡❡♥ ❜♦① ✐♥❞✐❝❛t❡s ❛ ♣r❡✈✐♦✉s❧② ♠✐ss✐♥❣ ❛♥♥♦t❛t✐♦♥s✱ ♥♦✇ ♠❛r❦❡❞
❛s ✏✐❣♥♦r❡✑✳ ❉❡t❡❝t✐♥❣ t❤✐s ❢❛❝❡ s❤♦✉❧❞ ♥♦t ❝♦✉♥t ❛s ❢❛❧s❡ ♣♦s✐t✐✈❡✳

❣r♦✉♥❞ tr✉t❤ ❛♥♥♦t❛t✐♦♥s✳ ❇② s❡❛r❝❤✐♥❣ ❛ ❣❧♦❜❛❧ s❝❛❧✐♥❣ ❛♥❞ tr❛♥s❧❛t✐♦♥ t❤❛t
♠❛①✐♠✐③❡ ♣❡r❢♦r♠❛♥❝❡s ✇❡ ❡✈❛❧✉❛t❡ ❛s ✐❢ ❡❛❝❤ ♠❡t❤♦❞ ✇♦✉❧❞ ❤❛✈❡ t❛❦❡♥ ❝❛r❡ ♦❢
t❛r❣❡t✐♥❣ t❤❡✐r ❞❡t❡❝t✐♦♥s ✭s✐③❡ ❛♥❞ ♣♦s✐t✐♦♥✮ t♦✇❛r❞s t❤❡ s♣❡❝✐✜❝ t❡st s❡t✳
◆♦t❡ t❤❛t s✐♥❝❡ ❜♦✉♥❞✐♥❣ ❜♦①❡s ❛r❡ ❛❞❛♣t❡❞ ❢♦r ❡✈❡r② ♠❡t❤♦❞ ✐♥ ♦✉r ❡✈❛❧✉❛t✐♦♥✱
✐t ❜❡❝♦♠❡s ♣❛rt ♦❢ t❤❡ ❡✈❛❧✉❛t✐♦♥ ♣r♦t♦❝♦❧ ❛♥❞ ❞♦❡s ♥♦t ❛❞✈❛♥t❛❣❡ ❛♥② s♣❡❝✐✜❝
♠❡t❤♦❞✳ ❚❤❡ ❞❡t❛✐❧s ♦❢ t❤❡ ❡st✐♠❛t✐♦♥ ❛❧❣♦r✐t❤♠ ❛r❡ ♣r♦✈✐❞❡❞ ✐♥ t❤❡ s✉♣♣❧❡♠❡♥✲
t❛r② ♠❛t❡r✐❛❧✳

❘❡♠❡❞✐❛❧ ♠❡❛s✉r❡s ❢♦r ❞✐✛❡r❡♥t s❝❛❧❡ r❛♥❣❡s ❆♥♦t❤❡r ✐♠♣♦rt❛♥t ❛s♣❡❝t ♦❢
t❤❡ ❞✐✛❡r❡♥t ❞❡t❡❝t♦rs ✐s t❤❡✐r ♠✐♥✐♠❛❧ ❛♥❞ ♠❛①✐♠❛❧ s❡❛r❝❤ s❝❛❧❡✳ ❉✐✛❡r❡♥t s❡❛r❝❤
r❛♥❣❡s r❡s✉❧t ✐♥ ❞✐✛❡r❡♥t s❡ts ♦❢ ❞❡t❡❝t❡❞ ❜♦✉♥❞✐♥❣ ❜♦①❡s✳ ❚❤❡ s❡❛r❝❤ r❛♥❣❡ ❛♥❞
❛♥♥♦t❛t✐♦♥ q✉❛❧✐t②✴❣✉✐❞❡❧✐♥❡s ❤❛✈❡ s❡✈❡r❡ ✐♠♣❛❝t ♦♥ t❤❡ ♦✈❡r❛❧❧ ❞❡t❡❝t♦r q✉❛❧✐t②✳
■❢ ♦♥❡ ❛♣♣r♦❛❝❤ s❡❛r❝❤❡s ❢♦r s♠❛❧❧❡r ❢❛❝❡s t❤❛♥ s♣❡❝✐✜❡❞ ❜② t❤❡ ❞❛t❛s❡t ♣♦❧✐❝②✱
❤✐❣❤ s❝♦r✐♥❣ ❢❛❧s❡ ♣♦s✐t✐✈❡s ♠✐❣❤t ❜❡ ✐♥tr♦❞✉❝❡❞❀ ✐❢ ❛ ♠❡t❤♦❞ ✐s s❡❛r❝❤✐♥❣ ♦♥❧②
❢♦r ❧❛r❣❡r ❢❛❝❡s✱ ✐t ✇✐❧❧ ♠✐ss ♦✉t ♦♥ r❡❝❛❧❧✳ ❚❤✉s ✉s✐♥❣ ❛♥♥♦t❛t✐♦♥s ❛♥❞ ❞❡t❡❝t✐♦♥s
❛s✲✐s ✐s ❛ ♥♦ ❣♦✳

❋♦r t❤❡ s❛❦❡ ♦❢ ❡①♣❧❛♥❛t✐♦♥ ❧❡t ✉s ❛ss✉♠❡ ❛ ❞❛t❛s❡t ❤❛s ❜❡❡♥ ♣❡r❢❡❝t❧② ❛♥♥♦✲
t❛t❡❞ ❢♦r ❛❧❧ ❢❛❝❡s ❧❛r❣❡r t❤❛♥ 15 ♣✐①❡❧s✳ ❉✐✛❡r❡♥t ❞❡t❡❝t♦rs ✇✐❧❧ ♦✉t♣✉t ❞✐✛❡r❡♥t
❞❡t❡❝t✐♦♥ s✐③❡s✱ ✇❤✐❝❤ ♠✐❣❤t ♦r ♠✐❣❤t ♥♦t ❝♦✈❡r t❤❡ ♠✐♥✐♠✉♠ s✐③❡ ❛♥♥♦t❛t✐♦♥s✳ ■♥
t❤✐s ❡①❛♠♣❧❡✱ ❧❡t ✉s ❛ss✉♠❡ t❤❛t ✇❡ ❛r❡ ✐♥t❡r❡st❡❞ ✐♥ ❡✈❛❧✉❛t✐♥❣ ❛❧❧ ❢❛❝❡s ❧❛r❣❡r
t❤❛♥ α = 30 ♣✐①❡❧s✳ ❚❤❡ ♥❛✐✈❡ ❛♣♣r♦❛❝❤ ✇♦✉❧❞ ❜❡ t♦ ❝❤♦♣✲♦✛ ❛❧❧ ❛♥♥♦t❛t✐♦♥s
s♠❛❧❧❡r t❤❛♥ α✱ ❛♥❞ ❛❧s♦ ❛❧❧ ❞❡t❡❝t✐♦♥s s♠❛❧❧❡r t❤❛♥ α✳ ❍♦✇❡✈❡r✱ ✐❢ t❤❡ ❞❡t❡❝t♦r
♦r✐❣✐♥❛❧❧② tr✐❣❣❡r❡❞ ✇✐t❤ ❛ ❜♦✉♥❞✐♥❣ ❜♦① ♦❢ s✐③❡ α − 1 ❢♦r ❛ ❢❛❝❡ ♦❢ tr✉❡ s✐③❡ α✱
r❡♠♦✈✐♥❣ ✐t ✇✐❧❧ ❝r❡❛t❡ ❛ ❞r♦♣ ✐♥ r❡❝❛❧❧ ✭❢❛❧s❡ ♥❡❣❛t✐✈❡✮✳ ■❢ ♦♥❡ ❞❡❝✐❞❡s t♦ ❦❡❡♣
❞❡t❡❝t✐♦♥ s♠❛❧❧❡r t❤❛♥ α ✇❤✐❧❡ ❞r♦♣♣✐♥❣ ❛♥♥♦t❛t✐♦♥s s♠❛❧❧❡r t❤❛♥ α✱ t❤❡♥ t❤✐s
❝r❡❛t❡ ❛rt✐✜❝✐❛❧ ❢❛❧s❡ ♣♦s✐t✐✈❡s✳ ❚❤❡ ♥❛✐✈❡ ❛♣♣r♦❛❝❤ ❞♦❡s ♥♦t ✇♦r❦ ❡✐t❤❡r✳

❲❡ ♣r♦♣♦s❡ t♦ s♦❧✈❡ t❤✐s ♣r♦❜❧❡♠ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✇❛②✳ ●✐✈❡♥ ❛ s❡t ♦❢ ❛♥✲
♥♦t❛t✐♦♥s✱ t❤❡ ❡✈❛❧✉❛t✐♦♥ ♠✐♥✐♠❛❧ s✐③❡ α ✐s s❡t t♦ ❛ ✈❛❧✉❡ ❝♦♠❢♦rt❛❜❧② ❧❛r❣❡r
t❤❛♥ t❤❡ ♠✐♥✐♠❛❧ ❛♥♥♦t❛t✐♦♥ s✐③❡✳ ❲❡ ✐♥tr♦❞✉❝❡ ❛ s❡❝♦♥❞ t❤r❡s❤♦❧❞ β✱ ✇❤✐❝❤

Precision-Recall values w.r.t.
model hyperparameters

𝐴𝑃 = 1
11 ∑

𝑟∈{0,0.1,…,1}
𝑝(𝑟)

𝑚𝐴𝑃 — averaged 𝐴𝑃 over all
classes

𝑚𝐴𝑃 may also be averaged
over IoU thresholds
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Miss rate vs FPPI

Caltech Pedestrian Detection Benchmark
10

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


Annotation protocol

❋❛❝❡ ❞❡t❡❝t✐♦♥ ✇✐t❤♦✉t ❜❡❧❧s ❛♥❞ ✇❤✐st❧❡s ✸

✭❛✮ ❖r✐❣✐♥❛❧ ❛♥♥♦t❛t✐♦♥s

✭❜✮ ❯♣❞❛t❡❞ ❛♥♥♦t❛t✐♦♥s

❋✐❣✉r❡ ✷✿ ❖r✐❣✐♥❛❧ ❛♥❞ ✉♣❞❛t❡❞ ❛♥♥♦t❛t✐♦♥s ♦♥ t❤❡ P❛s❝❛❧ ❋❛❝❡s ❞❛t❛s❡t✳ ❲❡
❛❞❞❡❞ ♠❛♥② ♠✐ss✐♥❣ ❜♦✉♥❞✐♥❣ ❜♦①❡s ❛♥❞ ❝❤❛♥❣❡❞ ❡①✐st✐♥❣ ♦♥❡s t♦ ❢♦❧❧♦✇ ❛ ❝♦♥✲
s✐st❡♥t ❛♥♥♦t❛t✐♦♥ ♣♦❧✐❝②✳

✭❛✮ ❖r✐❣✐♥❛❧ ❛♥♥♦t❛t✐♦♥s

✭❜✮ ❯♣❞❛t❡❞ ❛♥♥♦t❛t✐♦♥s

❋✐❣✉r❡ ✸✿ ❖r✐❣✐♥❛❧ ❛♥❞ ✉♣❞❛t❡❞ ❛♥♥♦t❛t✐♦♥s ♦♥ t❤❡ ❆❋❲ ❞❛t❛s❡t✳ ❲❡ ♦♥❧② ❛❞❞❡❞
♠✐ss✐♥❣ ❛♥♥♦t❛t✐♦♥s✱ t❤❡ ❜♦✉♥❞✐♥❣ ❜♦①❡s ♦❢ ❡①✐st✐♥❣ ❛♥♥♦t❛t✐♦♥s ✇❡r❡ ❛❧r❡❛❞②
❛❝❝✉r❛t❡✳

Mathias et al. Face detection without bells and whistles. ECCV 2014 11



Outline

1. Task statement, datasets and metrics

2. Object detection via classification

3. R-CNN, Fast R-CNN, Faster R-CNN

4. YOLO

5. RetinaNet

6. Anchor-free detection
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Sliding window
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Multiscale sliding windows
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Mutiresolution pyramid
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Mutiple aspect ratios
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Non-maximum suppression (NMS)

Loop:
choose window with max confidence
remove all windows that instersect with chosen window
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Imbalanced classes
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Hard negative mining

1. Choose random background
samples

2. Train classifier
3. Loop:

3.1 Evaluate detector on train
images

3.2 Choose hard false positive
samples, add to classifier
training sample

3.3 Retrain classifier
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R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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Selective Search
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Fast R-CNN

23



Spatial Pyramid Pooling

He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. TPAMI 2015
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Fast R-CNN architecture
SPPnet also has notable drawbacks. Like R-CNN, train-

ing is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs,
and finally fitting bounding-box regressors. Features are
also written to disk. But unlike R-CNN, the fine-tuning al-
gorithm proposed in [11] cannot update the convolutional
layers that precede the spatial pyramid pooling. Unsurpris-
ingly, this limitation (fixed convolutional layers) limits the
accuracy of very deep networks.

1.2. Contributions

We propose a new training algorithm that fixes the disad-
vantages of R-CNN and SPPnet, while improving on their
speed and accuracy. We call this method Fast R-CNN be-
cause it’s comparatively fast to train and test. The Fast R-
CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe
[13]) and is available under the open-source MIT Li-
cense at https://github.com/rbgirshick/
fast-rcnn.

2. Fast R-CNN architecture and training
Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set
of object proposals. The network first processes the whole
image with several convolutional (conv) and max pooling
layers to produce a conv feature map. Then, for each ob-
ject proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map.
Each feature vector is fed into a sequence of fully connected
(fc) layers that finally branch into two sibling output lay-
ers: one that produces softmax probability estimates over
K object classes plus a catch-all “background” class and
another layer that outputs four real-valued numbers for each
of theK object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

2.1. The RoI pooling layer

The RoI pooling layer uses max pooling to convert the
features inside any valid region of interest into a small fea-
ture map with a fixed spatial extent of H ×W (e.g., 7× 7),
where H and W are layer hyper-parameters that are inde-
pendent of any particular RoI. In this paper, an RoI is a
rectangular window into a conv feature map. Each RoI is
defined by a four-tuple (r, c, h, w) that specifies its top-left
corner (r, c) and its height and width (h,w).

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (RoIs) are input into a fully convolutional
network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h× w RoI win-
dow into an H ×W grid of sub-windows of approximate
size h/H × w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pool-
ing is applied independently to each feature map channel,
as in standard max pooling. The RoI layer is simply the
special-case of the spatial pyramid pooling layer used in
SPPnets [11] in which there is only one pyramid level. We
use the pooling sub-window calculation given in [11].

2.2. Initializing from pre-trained networks

We experiment with three pre-trained ImageNet [4] net-
works, each with five max pooling layers and between five
and thirteen conv layers (see Section 4.1 for network de-
tails). When a pre-trained network initializes a Fast R-CNN
network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI
pooling layer that is configured by setting H and W to be
compatible with the net’s first fully connected layer (e.g.,
H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-
max (which were trained for 1000-way ImageNet classifi-
cation) are replaced with the two sibling layers described
earlier (a fully connected layer and softmax over K+ 1 cat-
egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a
list of images and a list of RoIs in those images.

2.3. Fine-tuning for detection

Training all network weights with back-propagation is an
important capability of Fast R-CNN. First, let’s elucidate
why SPPnet is unable to update weights below the spatial
pyramid pooling layer.

The root cause is that back-propagation through the SPP
layer is highly inefficient when each training sample (i.e.
RoI) comes from a different image, which is exactly how
R-CNN and SPPnet networks are trained. The inefficiency

Key ideas:
• compute CNN features over whole image
• use RoI pooling to compute features for region
• train a neural network on top of features for bbox classification and

regression

R. Girshick. Fast R-CNN. ICCV 2015
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R-CNN and Fast R-CNN comparison

R-CNN Fast R-CNN
Training time 84h 8.75h
Testing per image 47s 0.32s
+ selective search 49s 2.32s
Test mAP 66.0% 68.1%
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Faster R-CNN 3

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.

into a convolutional layer for detecting multiple class-
specific objects. The MultiBox methods [26], [27] gen-
erate region proposals from a network whose last
fully-connected layer simultaneously predicts mul-
tiple class-agnostic boxes, generalizing the “single-
box” fashion of OverFeat. These class-agnostic boxes
are used as proposals for R-CNN [5]. The MultiBox
proposal network is applied on a single image crop or
multiple large image crops (e.g., 224×224), in contrast
to our fully convolutional scheme. MultiBox does not
share features between the proposal and detection
networks. We discuss OverFeat and MultiBox in more
depth later in context with our method. Concurrent
with our work, the DeepMask method [28] is devel-
oped for learning segmentation proposals.

Shared computation of convolutions [9], [1], [29],
[7], [2] has been attracting increasing attention for ef-
ficient, yet accurate, visual recognition. The OverFeat
paper [9] computes convolutional features from an
image pyramid for classification, localization, and de-
tection. Adaptively-sized pooling (SPP) [1] on shared
convolutional feature maps is developed for efficient
region-based object detection [1], [30] and semantic
segmentation [29]. Fast R-CNN [2] enables end-to-end
detector training on shared convolutional features and
shows compelling accuracy and speed.

3 FASTER R-CNN
Our object detection system, called Faster R-CNN, is
composed of two modules. The first module is a deep
fully convolutional network that proposes regions,
and the second module is the Fast R-CNN detector [2]
that uses the proposed regions. The entire system is a

single, unified network for object detection (Figure 2).
Using the recently popular terminology of neural
networks with ‘attention’ [31] mechanisms, the RPN
module tells the Fast R-CNN module where to look.
In Section 3.1 we introduce the designs and properties
of the network for region proposal. In Section 3.2 we
develop algorithms for training both modules with
features shared.

3.1 Region Proposal Networks
A Region Proposal Network (RPN) takes an image
(of any size) as input and outputs a set of rectangular
object proposals, each with an objectness score.3 We
model this process with a fully convolutional network
[7], which we describe in this section. Because our ulti-
mate goal is to share computation with a Fast R-CNN
object detection network [2], we assume that both nets
share a common set of convolutional layers. In our ex-
periments, we investigate the Zeiler and Fergus model
[32] (ZF), which has 5 shareable convolutional layers
and the Simonyan and Zisserman model [3] (VGG-16),
which has 13 shareable convolutional layers.

To generate region proposals, we slide a small
network over the convolutional feature map output
by the last shared convolutional layer. This small
network takes as input an n × n spatial window of
the input convolutional feature map. Each sliding
window is mapped to a lower-dimensional feature
(256-d for ZF and 512-d for VGG, with ReLU [33]
following). This feature is fed into two sibling fully-
connected layers—a box-regression layer (reg) and a
box-classification layer (cls). We use n = 3 in this
paper, noting that the effective receptive field on the
input image is large (171 and 228 pixels for ZF and
VGG, respectively). This mini-network is illustrated
at a single position in Figure 3 (left). Note that be-
cause the mini-network operates in a sliding-window
fashion, the fully-connected layers are shared across
all spatial locations. This architecture is naturally im-
plemented with an n×n convolutional layer followed
by two sibling 1× 1 convolutional layers (for reg and
cls, respectively).

3.1.1 Anchors
At each sliding-window location, we simultaneously
predict multiple region proposals, where the number
of maximum possible proposals for each location is
denoted as k. So the reg layer has 4k outputs encoding
the coordinates of k boxes, and the cls layer outputs
2k scores that estimate probability of object or not
object for each proposal4. The k proposals are param-
eterized relative to k reference boxes, which we call

3. “Region” is a generic term and in this paper we only consider
rectangular regions, as is common for many methods (e.g., [27], [4],
[6]). “Objectness” measures membership to a set of object classes
vs. background.

4. For simplicity we implement the cls layer as a two-class
softmax layer. Alternatively, one may use logistic regression to
produce k scores.

Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015 29



Region Proposal Network
4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ×H (typically ∼2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)× 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) × 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 × 104 parameters (512 × (4 + 2) × 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1× 106 parameters
(1536 × (4 + 1) × 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 × 3 × 512 × 512 + 512 × 6 × 9 = 2.4 × 106;
MultiBox’s proposal layers’ parameter count is 7× 7× (64 + 96 +
64 + 64)× 1536 + 1536× 5× 800 = 27× 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5×7 and 7×5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with
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You Only Look Once (YOLO)

Split image into cells
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For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes

32



You Only Look Once (YOLO)
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You Only Look Once (YOLO)
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You Only Look Once (YOLO)
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You Only Look Once (YOLO)

time to predict detections. Our base network runs at 45
frames per second with no batch processing on a Titan X
GPU and a fast version runs at more than 150 fps. This
means we can process streaming video in real-time with
less than 25 milliseconds of latency. Furthermore, YOLO
achieves more than twice the mean average precision of
other real-time systems. For a demo of our system run-
ning in real-time on a webcam please see our (anonymous)
YouTube channel: https://goo.gl/bEs6Cj.

Second, YOLO reasons globally about the image when
making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it encodes contextual in-
formation about classes as well as their appearance. Fast
R-CNN, a top detection method [14], mistakes background
patches in an image for objects because it can’t see the
larger context. YOLO makes less than half the number of
background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected input.

All of our training and testing code is open source and
available online at [removed for review]. A variety of pre-
trained models are also available to download.

2. Unified Detection
We unify the separate components of object detection

into a single neural network. Our network uses features
from the entire image to predict each bounding box. It
also predicts all bounding boxes for an image simultane-
ously. This means our network reasons globally about the
full image and all the objects in the image. The YOLO de-
sign enables end-to-end training and real-time speeds while
maintaining high average precision.

Our system divides the input image into a S × S grid. If
the center of an object falls into a grid cell, that grid cell is
responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ∗ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally

the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Classi|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict
one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

Figure 2: The Model. Our system models detection as a re-
gression problem. It divides the image into an even grid and si-
multaneously predicts bounding boxes, confidence in those boxes,
and class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7× 7× 30 tensor.

2.1. Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [33]. Our network has 24
convolutional layers followed by 2 fully connected lay-
ers. However, instead of the inception modules used by
GoogLeNet we simply use 1× 1 reduction layers followed
by 3× 3 convolutional layers, similar to Lin et al [22]. The
full network is shown in Figure 3.

2
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YOLO training

Find a cell for a training sample
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Comparison with other methods

Pascal 2007 mAP Speed
DPM v5 33.7 0.07 FPS
R-CNN 66.0 0.05 FPS
Fast R-CNN 70.0 0.5 FPS
Faster R-CNN 73.2 7 FPS
YOLO 69.0 45 FPS

35



Outline

1. Task statement, datasets and metrics

2. Object detection via classification

3. R-CNN, Fast R-CNN, Faster R-CNN

4. YOLO

5. RetinaNet

6. Anchor-free detection

36



Feature pyramids

Network receptive field size isn’t always similar to object size
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Feature pyramids

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 6 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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Feature pyramids

Deep ConvNet object detectors. With the development
of modern deep ConvNets [19], object detectors like Over-
Feat [34] and R-CNN [12] showed dramatic improvements
in accuracy. OverFeat adopted a strategy similar to early
neural network face detectors by applying a ConvNet as
a sliding window detector on an image pyramid. R-CNN
adopted a region proposal-based strategy [37] in which each
proposal was scale-normalized before classifying with a
ConvNet. SPPnet [15] demonstrated that such region-based
detectors could be applied much more efficiently on fea-
ture maps extracted on a single image scale. Recent and
more accurate detection methods like Fast R-CNN [11] and
Faster R-CNN [29] advocate using features computed from
a single scale, because it offers a good trade-off between
accuracy and speed. Multi-scale detection, however, still
performs better, especially for small objects.

Methods using multiple layers. A number of recent ap-
proaches improve detection and segmentation by using dif-
ferent layers in a ConvNet. FCN [24] sums partial scores
for each category over multiple scales to compute semantic
segmentations. Hypercolumns [13] uses a similar method
for object instance segmentation. Several other approaches
(HyperNet [18], ParseNet [23], and ION [2]) concatenate
features of multiple layers before computing predictions,
which is equivalent to summing transformed features. SSD
[22] and MS-CNN [3] predict objects at multiple layers of
the feature hierarchy without combining features or scores.

There are recent methods exploiting lateral/skip connec-
tions that associate low-level feature maps across resolu-
tions and semantic levels, including U-Net [31] and Sharp-
Mask [28] for segmentation, Recombinator networks [17]
for face detection, and Stacked Hourglass networks [26]
for keypoint estimation. Ghiasi et al. [8] present a Lapla-
cian pyramid presentation for FCNs to progressively refine
segmentation. Although these methods adopt architectures
with pyramidal shapes, they are unlike featurized image
pyramids [5, 7, 34] where predictions are made indepen-
dently at all levels, see Fig. 2. In fact, for the pyramidal
architecture in Fig. 2 (top), image pyramids are still needed
to recognize objects across multiple scales [28].

3. Feature Pyramid Networks

Our goal is to leverage a ConvNet’s pyramidal feature
hierarchy, which has semantics from low to high levels, and
build a feature pyramid with high-level semantics through-
out. The resulting Feature Pyramid Network is general-
purpose and in this paper we focus on sliding window pro-
posers (Region Proposal Network, RPN for short) [29] and
region-based detectors (Fast R-CNN) [11]. We also gener-
alize FPNs to instance segmentation proposals in Sec. 6.

Our method takes a single-scale image of an arbitrary
size as input, and outputs proportionally sized feature maps

2x up

1x1 conv +

predict

predict

predict

Figure 3. A building block illustrating the lateral connection and
the top-down pathway, merged by addition.

at multiple levels, in a fully convolutional fashion. This pro-
cess is independent of the backbone convolutional architec-
tures (e.g., [19, 36, 16]), and in this paper we present results
using ResNets [16]. The construction of our pyramid in-
volves a bottom-up pathway, a top-down pathway, and lat-
eral connections, as introduced in the following.

Bottom-up pathway. The bottom-up pathway is the feed-
forward computation of the backbone ConvNet, which com-
putes a feature hierarchy consisting of feature maps at sev-
eral scales with a scaling step of 2. There are often many
layers producing output maps of the same size and we say
these layers are in the same network stage. For our feature
pyramid, we define one pyramid level for each stage. We
choose the output of the last layer of each stage as our ref-
erence set of feature maps, which we will enrich to create
our pyramid. This choice is natural since the deepest layer
of each stage should have the strongest features.

Specifically, for ResNets [16] we use the feature activa-
tions output by each stage’s last residual block. We denote
the output of these last residual blocks as {C2, C3, C4, C5}
for conv2, conv3, conv4, and conv5 outputs, and note that
they have strides of {4, 8, 16, 32} pixels with respect to the
input image. We do not include conv1 into the pyramid due
to its large memory footprint.

Top-down pathway and lateral connections. The top-
down pathway hallucinates higher resolution features by
upsampling spatially coarser, but semantically stronger, fea-
ture maps from higher pyramid levels. These features are
then enhanced with features from the bottom-up pathway
via lateral connections. Each lateral connection merges fea-
ture maps of the same spatial size from the bottom-up path-
way and the top-down pathway. The bottom-up feature map
is of lower-level semantics, but its activations are more ac-
curately localized as it was subsampled fewer times.

Fig. 3 shows the building block that constructs our top-
down feature maps. With a coarser-resolution feature map,
we upsample the spatial resolution by a factor of 2 (using
nearest neighbor upsampling for simplicity). The upsam-
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Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 − pt)

γ to the standard cross entropy criterion.
Setting γ > 0 reduces the relative loss for well-classified examples
(pt > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors.
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Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 27, 19, 13], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [25, 26] and SSD [21, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the
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Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [19] backbone on top of a feedforward
ResNet architecture [15] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [19] while running at faster speeds.

Classification Subnet: The classification subnet predicts
the probability of object presence at each spatial position
for each of the A anchors and K object classes. This subnet
is a small FCN attached to each FPN level; parameters of
this subnet are shared across all pyramid levels. Its design
is simple. Taking an input feature map with C channels
from a given pyramid level, the subnet applies four 3×3
conv layers, each with C filters and each followed by ReLU
activations, followed by a 3×3 conv layer with KA filters.
Finally sigmoid activations are attached to output the KA
binary predictions per spatial location, see Figure 3 (c). We
use C = 256 and A = 9 in most experiments.

In contrast to RPN [27], our object classification subnet
is deeper, uses only 3×3 convs, and does not share param-
eters with the box regression subnet (described next). We
found these higher-level design decisions to be more im-
portant than specific values of hyperparameters.

Box Regression Subnet: In parallel with the object classi-
fication subnet, we attach another small FCN to each pyra-
mid level for the purpose of regressing the offset from each
anchor box to a nearby ground-truth object, if one exists.
The design of the box regression subnet is identical to the
classification subnet except that it terminates in 4A linear
outputs per spatial location, see Figure 3 (d). For each
of the A anchors per spatial location, these 4 outputs pre-
dict the relative offset between the anchor and the ground-
truth box (we use the standard box parameterization from R-
CNN [11]). We note that unlike most recent work, we use a
class-agnostic bounding box regressor which uses fewer pa-
rameters and we found to be equally effective. The object
classification subnet and the box regression subnet, though
sharing a common structure, use separate parameters.

4.1. Inference and Training

Inference: RetinaNet forms a single FCN comprised of a
ResNet-FPN backbone, a classification subnet, and a box

regression subnet, see Figure 3. As such, inference involves
simply forwarding an image through the network. To im-
prove speed, we only decode box predictions from at most
1k top-scoring predictions per FPN level, after threshold-
ing detector confidence at 0.05. The top predictions from
all levels are merged and non-maximum suppression with a
threshold of 0.5 is applied to yield the final detections.

Focal Loss: We use the focal loss introduced in this work
as the loss on the output of the classification subnet. As we
will show in §5, we find that γ = 2 works well in practice
and the RetinaNet is relatively robust to γ ∈ [0.5, 5]. We
emphasize that when training RetinaNet, the focal loss is
applied to all ∼100k anchors in each sampled image. This
stands in contrast to common practice of using heuristic
sampling (RPN) or hard example mining (OHEM, SSD) to
select a small set of anchors (e.g., 256) for each minibatch.
The total focal loss of an image is computed as the sum
of the focal loss over all ∼100k anchors, normalized by the
number of anchors assigned to a ground-truth box. We per-
form the normalization by the number of assigned anchors,
not total anchors, since the vast majority of anchors are easy
negatives and receive negligible loss values under the focal
loss. Finally we note that α, the weight assigned to the rare
class, also has a stable range, but it interacts with γ mak-
ing it necessary to select the two together (see Tables 1a
and 1b). In general α should be decreased slightly as γ is
increased (for γ = 2, α = 0.25 works best).

Initialization: We experiment with ResNet-50-FPN and
ResNet-101-FPN backbones [19]. The base ResNet-50 and
ResNet-101 models are pre-trained on ImageNet1k; we use
the models released by [15]. New layers added for FPN are
initialized as in [19]. All new conv layers except the final
one in the RetinaNet subnets are initialized with bias b = 0
and a Gaussian weight fill with σ = 0.01. For the final conv
layer of the classification subnet, we set the bias initializa-
tion to b = − log((1 − π)/π), where π specifies that at
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Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 − pt)

γ to the standard cross entropy criterion.
Setting γ > 0 reduces the relative loss for well-classified examples
(pt > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors.
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Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 27, 19, 13], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [25, 26] and SSD [21, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the
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Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [19] backbone on top of a feedforward
ResNet architecture [15] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [19] while running at faster speeds.

Classification Subnet: The classification subnet predicts
the probability of object presence at each spatial position
for each of the A anchors and K object classes. This subnet
is a small FCN attached to each FPN level; parameters of
this subnet are shared across all pyramid levels. Its design
is simple. Taking an input feature map with C channels
from a given pyramid level, the subnet applies four 3×3
conv layers, each with C filters and each followed by ReLU
activations, followed by a 3×3 conv layer with KA filters.
Finally sigmoid activations are attached to output the KA
binary predictions per spatial location, see Figure 3 (c). We
use C = 256 and A = 9 in most experiments.

In contrast to RPN [27], our object classification subnet
is deeper, uses only 3×3 convs, and does not share param-
eters with the box regression subnet (described next). We
found these higher-level design decisions to be more im-
portant than specific values of hyperparameters.

Box Regression Subnet: In parallel with the object classi-
fication subnet, we attach another small FCN to each pyra-
mid level for the purpose of regressing the offset from each
anchor box to a nearby ground-truth object, if one exists.
The design of the box regression subnet is identical to the
classification subnet except that it terminates in 4A linear
outputs per spatial location, see Figure 3 (d). For each
of the A anchors per spatial location, these 4 outputs pre-
dict the relative offset between the anchor and the ground-
truth box (we use the standard box parameterization from R-
CNN [11]). We note that unlike most recent work, we use a
class-agnostic bounding box regressor which uses fewer pa-
rameters and we found to be equally effective. The object
classification subnet and the box regression subnet, though
sharing a common structure, use separate parameters.

4.1. Inference and Training

Inference: RetinaNet forms a single FCN comprised of a
ResNet-FPN backbone, a classification subnet, and a box

regression subnet, see Figure 3. As such, inference involves
simply forwarding an image through the network. To im-
prove speed, we only decode box predictions from at most
1k top-scoring predictions per FPN level, after threshold-
ing detector confidence at 0.05. The top predictions from
all levels are merged and non-maximum suppression with a
threshold of 0.5 is applied to yield the final detections.

Focal Loss: We use the focal loss introduced in this work
as the loss on the output of the classification subnet. As we
will show in §5, we find that γ = 2 works well in practice
and the RetinaNet is relatively robust to γ ∈ [0.5, 5]. We
emphasize that when training RetinaNet, the focal loss is
applied to all ∼100k anchors in each sampled image. This
stands in contrast to common practice of using heuristic
sampling (RPN) or hard example mining (OHEM, SSD) to
select a small set of anchors (e.g., 256) for each minibatch.
The total focal loss of an image is computed as the sum
of the focal loss over all ∼100k anchors, normalized by the
number of anchors assigned to a ground-truth box. We per-
form the normalization by the number of assigned anchors,
not total anchors, since the vast majority of anchors are easy
negatives and receive negligible loss values under the focal
loss. Finally we note that α, the weight assigned to the rare
class, also has a stable range, but it interacts with γ mak-
ing it necessary to select the two together (see Tables 1a
and 1b). In general α should be decreased slightly as γ is
increased (for γ = 2, α = 0.25 works best).

Initialization: We experiment with ResNet-50-FPN and
ResNet-101-FPN backbones [19]. The base ResNet-50 and
ResNet-101 models are pre-trained on ImageNet1k; we use
the models released by [15]. New layers added for FPN are
initialized as in [19]. All new conv layers except the final
one in the RetinaNet subnets are initialized with bias b = 0
and a Gaussian weight fill with σ = 0.01. For the final conv
layer of the classification subnet, we set the bias initializa-
tion to b = − log((1 − π)/π), where π specifies that at
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Setting γ > 0 reduces the relative loss for well-classified examples
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our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors.
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Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 27, 19, 13], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [25, 26] and SSD [21, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the

1

ar
X

iv
:1

70
8.

02
00

2v
1 

 [
cs

.C
V

] 
 7

 A
ug

 2
01

7

40



Outline

1. Task statement, datasets and metrics

2. Object detection via classification

3. R-CNN, Fast R-CNN, Faster R-CNN

4. YOLO

5. RetinaNet

6. Anchor-free detection
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FCOS bbox regression

Regress (l,t,r,b) vector
in every pixel

Train to predict smallest
bbox in case of
overlapping bboxes

Tian et al. Fully Convolutional One-Stage Object Detection. ICCV 2019
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FCOS architecture

centerness∗ = √min(𝑙∗, 𝑟∗)
max(𝑙∗, 𝑟∗)

×
min(𝑡∗, 𝑏∗)
max(𝑡∗, 𝑏∗)
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DETR

Carion et al. End-to-End Object Detection with Transformers. ECCV 2020
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DETR
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Conclusion

We reviewed following topics:
• object detection task, metrics and datasets
• development of two-stage R-CNN detector
• single stage detector YOLO
• using feature pyramids for improving detection quality on different

object resolutions
• anchor-free detectors FCOS and DETR
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