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One-class object detection

Find all objects of a fixed class in an
image. Output a set of bounding
boxes:
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One-class object detection

Find all objects of a fixed class in an
image. Output a set of bounding
boxes:
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Instead of bboxes may also use:
* rotated bboxes
e ellipses
® pixel mask




Multiclass object detection

Find all objects of a fixed set of
classes in an image. Output a set of
bounding boxes with classes:

{ Oy wis Ci)}f'v=1

N.B. we aim to find things (people,
cars), not stuff (sky, road)




MS COCO dataset
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Cow Dog Person

Train

200k images, 80 classes, 500k objects with masks

Lin et al. Microsoft COCO: Common Objects in Context. ECCV 2014



LVIS labelling for COCO

Doughnut Pineapple - Teacup Wineglass. Birdfeeder

J

Additional fine labelling for COCO
> 1000 object classes
2 M object masks

Gupta et al. LVIS: A Dataset for Large Vocabulary Instance Segmentation. CVPR 2019



loU matching criterion

JT iC; dberson
ﬂoundlng box

Area of overlap

Score =

Area of union

Detection is correct if loU > p (i.e. 0.5)



Computing precision and recall

Match predicted bboxes with ground
truth bboxes using predicted confidences
to compute TP, FP, FN
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Computing precision and recall

Match predicted bboxes with ground
truth bboxes using predicted confidences
to compute TP, FP, FN

o TP
precision = ————
TP+ FP
TP
recall =

TP+ FN




Precision

o
o

Precision-Recall curve
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Ours SquaresChnFtrs-5 (AP 85.57)
Structured Models [33] (AP 83.87)

TSM [36] (AP 76.35)
Sky Biometry [28] (AP 68.57)
OpenCV (AP 61.09)
W.S. Boosting [14] (AP 59.99)

Face++
Picasa
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Precision-Recall values w.r.t.
model hyperparameters

AP=% ¥ p()
re{0,0.1,...,1}

mAP — averaged AP over all
classes

mAP may also be averaged
over loU thresholds



Miss rate vs FPPI
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10 102
false positives per image

miss rate

Caltech Pedestrian Detection Benchmark 7


http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

Annotation protocol

(b) Updated annotations

Mathias et al. Face detection without bells and whistles. ECCV 2014
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Sliding window




Multiscale sliding windows




Mutiresolution pyramid




Mutiple aspect ratios




Non-maximum suppression (NMS)

Loop:
choose window with max confidence
remove all windows that instersect with chosen window



Imbalanced classes




precision

Hard negative mining

|. Choose random background

IRetrlaine]d (0.‘44) I—e;
Initial (0.23) —=— ] sam ples
0.8 . i
2. Train classifier

06 3. Loop:

o I 3.1 Evaluate detector on train
' images

" 3.2 Choose hard false positive

' samples, add to classifier

training sample

°© 02 04 06 08 1 3.3 Retrain classifier
recall
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R-CNN

R-CNN: Regions wzth CNN features

....................

1. Input 2. Extract region 3. Compute 4. Classify

image proposals (~2k) CNN features regions

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014
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Selective Search

Uijlings et al. Selective Search for Object Recognition. IJCV 2013
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Fast R-CNN
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Spatial Pyramid Pooling

fully-connected layers (fcg, fc7)

fixed-length representation

Al
r N

spatial pyramid
pooling layer

feature maps of convs

ﬁ convolutional layers

input image

He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. TPAMI 2015
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Rol pooling
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Rol pooling

region proposal
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Rol pooling

pooling sections
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Rol align
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Fast R-CNN architecture

T =g ,4' | Outputs: bbox
= softmax regressor

Rol FC FC
pooling

layer ﬂ]_ﬁfi

Rol feature
feature map vector For each Rol

Key ideas:
e compute CNN features over whole image
* use Rol pooling to compute features for region

e train a neural network on top of features for bbox classification and
regression

R. Girshick. Fast R-CNN. ICCV 2015
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R-CNN and Fast R-CNN comparison

R-CNN | Fast R-CNN
Training time 84h 8.75h
Testing per image 47s 0.32s
+ selective search 49s 2.32s
Test mAP 66.0% 68.1%

28



Faster R-CNN

classifier

proposalsi ;
Region Proposal Network

conv layers /
y

P =7 AR ILv’;

Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015
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Region Proposal Network

2k scores | | 4k coordinates ] <mm  kanchor boxes

clslayer \ t reg layer

' intermediate layer

sliding window:

conv feature map
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You Only Look Once (YOLO)

Split image into cells
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You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes
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You Only Look Once (YOLO)

For every cell predict P(Object) and bboxes
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You Only Look Once (YOLO)

For every cell also predict P(Class)
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You Only Look Once (YOLO)

Combine bboxes and class probabilities
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You Only Look Once (YOLO)

Apply NMS and probability thresholding
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You Only Look Once (YOLO)
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YOLO outputs
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YOLO training

Find a cell for a training sample
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YOLO training

Find a cell for a training sample
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YOLO training

Define probability vector using that training sample
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YOLO training

AN A "N
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Look at predicted bboxes for that cell
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YOLO training

Find nearest bbox
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YOLO training

Find nearest bbox
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YOLO training

And increase P(Object) for that bbox
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YOLO training

Lower P(Object) for other bboxes
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YOLO training

Lower P(Object) for other bboxes

34



YOLO training

S e R

Some cells don’t have corresponding training samples
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YOLO training

Lower P(Object) for bboxes in these cells
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YOLO training

Lower P(Object) for bboxes in these cells
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Comparison with other methods

Pascal 2007 mAP | Speed
DPM v5 33.7 0.07 FPS
R-CNN 66.0 0.05 FPS
Fast R-CNN | 70.0 0.5 FPS
Faster R-CNN | 73.2 7 FPS
YOLO 69.0 45 FPS
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Feature pyramids

o LTRSS o VL
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Network receptive field size isn’t always similar to object size
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Feature pyramids

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017
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Feature pyramids

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017
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Focal loss

CE(p,) = —log(p)
FL(p) = —(1 — p)" log(p,)

R 2222
&

o= oo

well-classified
examples

O Il
0 0.2 0.4 0.6

0.8

probability of ground truth class

Lin et al. Focal Loss for Dense Object Detection. ICCV 2017
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RetinaNet
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)




RetinaNet

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
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FCOS bbox regression

Tian et al. Fully Convolutional One-Stage Object Detection. ICCV 2019

Regress (l,t,r,b) vector
in every pixel

Train to predict smallest
bbox in case of
overlapping bboxes
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FCOS architecture

7x8 /128

13416 /64 Class)ﬁcmon

25x32 /32

x
I i
c3 [ZI ;
100x128 /8 i
800x1024 ﬁ Shared Heads Between Feature Levels

HxW /s Backbone Feature Pyramid | Classification + Cent +

min(l*,r*)  min(t*, b*)

centerness® = X
max(l*,r*)  max(t*, b*)




backbone :: encoder

1"
set of image featuresi1

1
! o
e ___ .2 transformer transformer object
encoder decoder class,
box

bddéd

object queries

Carion et al. End-to-End Object Detection with Transformers. ECCV 2020
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DETR

Decoder

M X

Encoder

Multi-Head Attention

Class  Bounding Box

Add & Norm

v 3 Q

Image features Spatial_posiional
encoding

Carion et al. End-to-End Object Detection with Transformers.

EOEE

Object queries

ECCV 2020
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Conclusion

We reviewed following topics:

object detection task, metrics and datasets
development of two-stage R-CNN detector
single stage detector YOLO

using feature pyramids for improving detection quality on different
object resolutions

anchor-free detectors FCOS and DETR
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