

# Object detection

Vlad Shakhuro



6 November 2025

# Outline

- I. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

# One-class object detection



Find all objects of a fixed class in an image. Output a set of bounding boxes:

$$\{(x_i, y_i, w_i, h_i)\}_{i=1}^N$$

# One-class object detection



Find all objects of a fixed class in an image. Output a set of bounding boxes:

$$\{(x_i, y_i, w_i, h_i)\}_{i=1}^N$$

Instead of bboxes may also use:

- rotated bboxes
- ellipses
- pixel mask

# Multiclass object detection

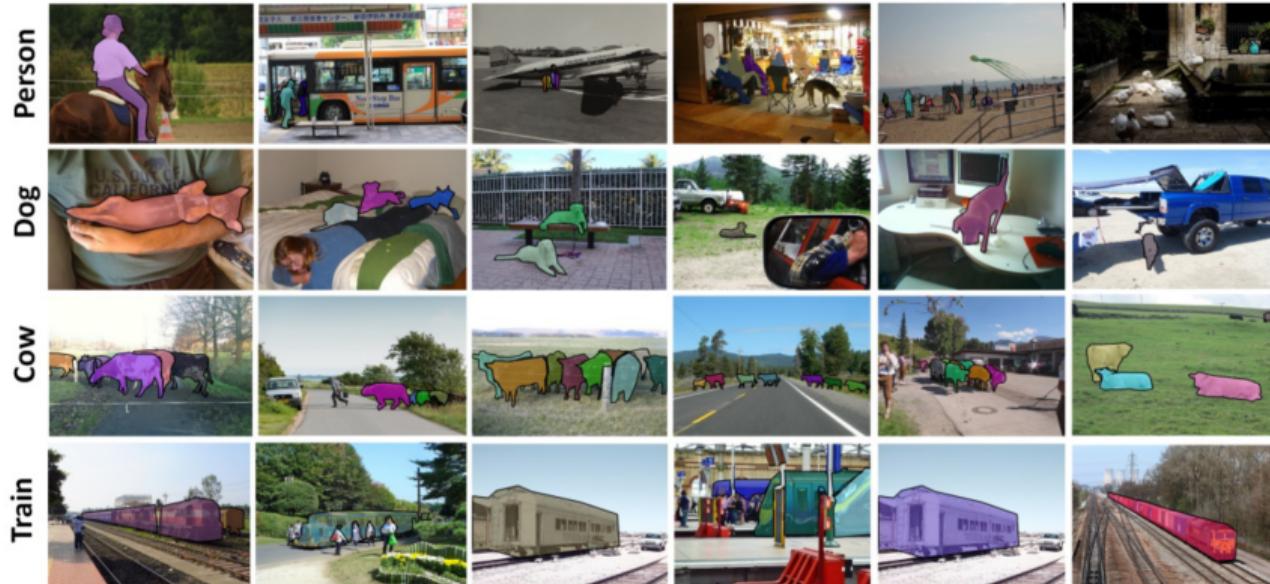


Find all objects of a fixed set of classes in an image. Output a set of bounding boxes with classes:

$$\{(x_i, y_i, w_i, h_i, c_i)\}_{i=1}^N$$

N.B. we aim to find things (people, cars), not stuff (sky, road)

# MS COCO dataset



200k images, 80 classes, 500k objects with masks

# LVIS labelling for COCO

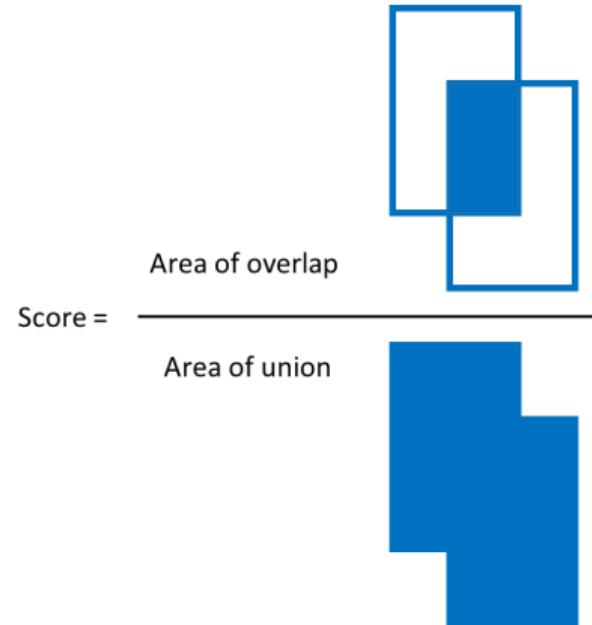


Additional fine labelling for COCO

> 1000 object classes

2 M object masks

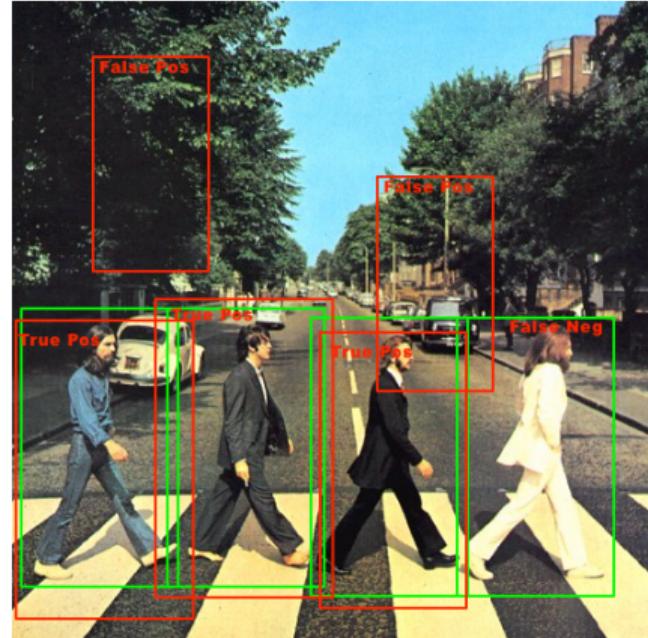
# IoU matching criterion



Detection is correct if  $\text{IoU} > p$  (i.e. 0.5)

# Computing precision and recall

Match predicted bboxes with ground truth bboxes using predicted confidences to compute TP, FP, FN

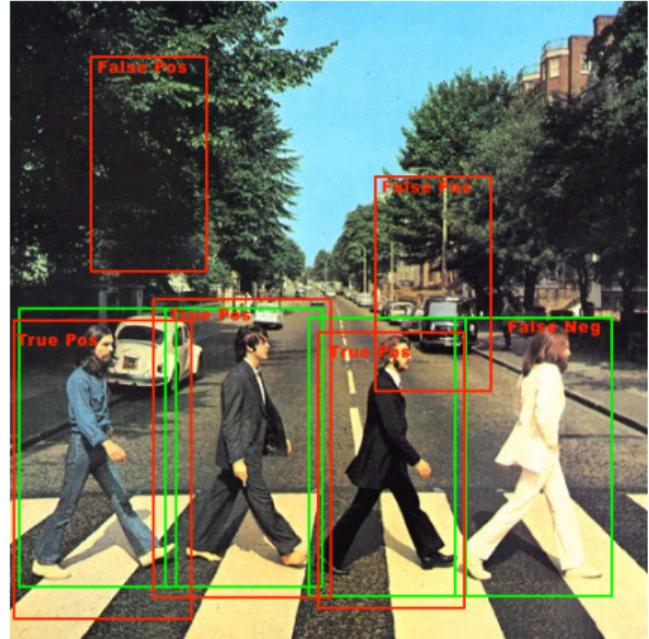


# Computing precision and recall

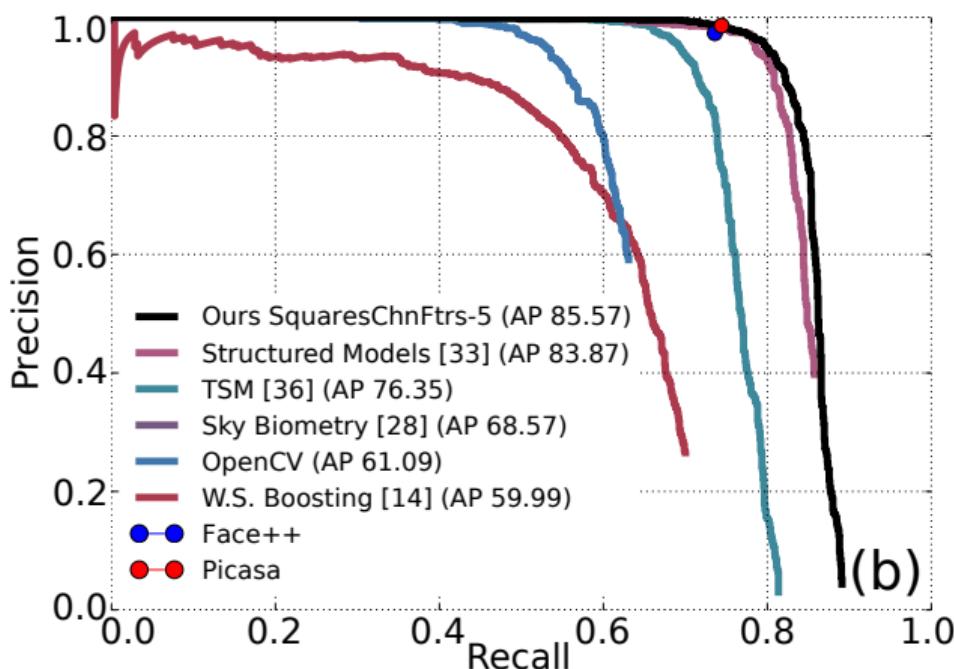
Match predicted bboxes with ground truth bboxes using predicted confidences to compute TP, FP, FN

$$\text{precision} = \frac{TP}{TP + FP}$$

$$\text{recall} = \frac{TP}{TP + FN}$$



# Precision-Recall curve



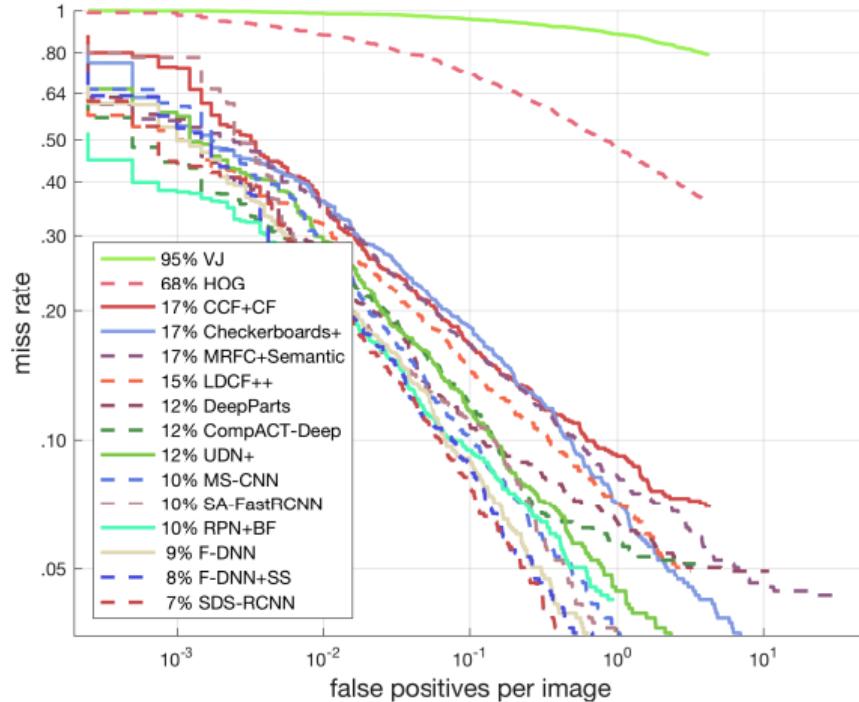
Precision-Recall values w.r.t.  
model hyperparameters

$$AP = \frac{1}{11} \sum_{r \in \{0, 0.1, \dots, 1\}} p(r)$$

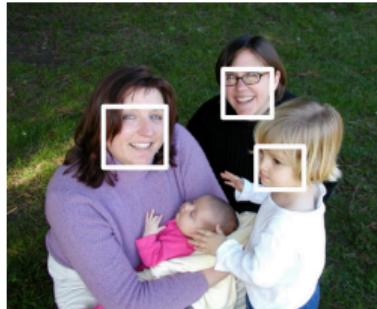
*mAP* — averaged *AP* over all  
classes

*mAP* may also be averaged  
over IoU thresholds

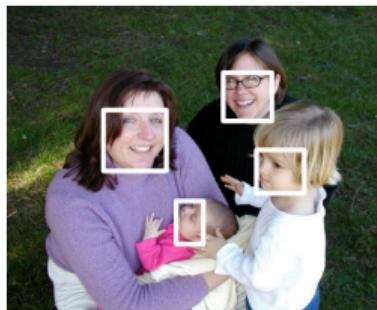
# Miss rate vs FPPI



# Annotation protocol



(a) Original annotations



(b) Updated annotations

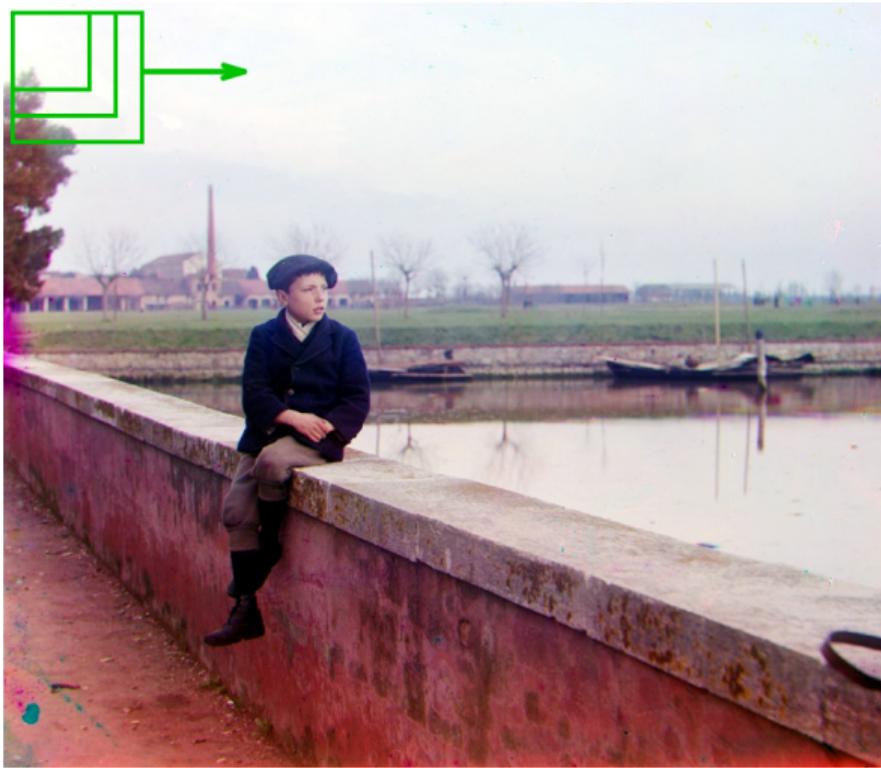
# Outline

- I. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

# Sliding window



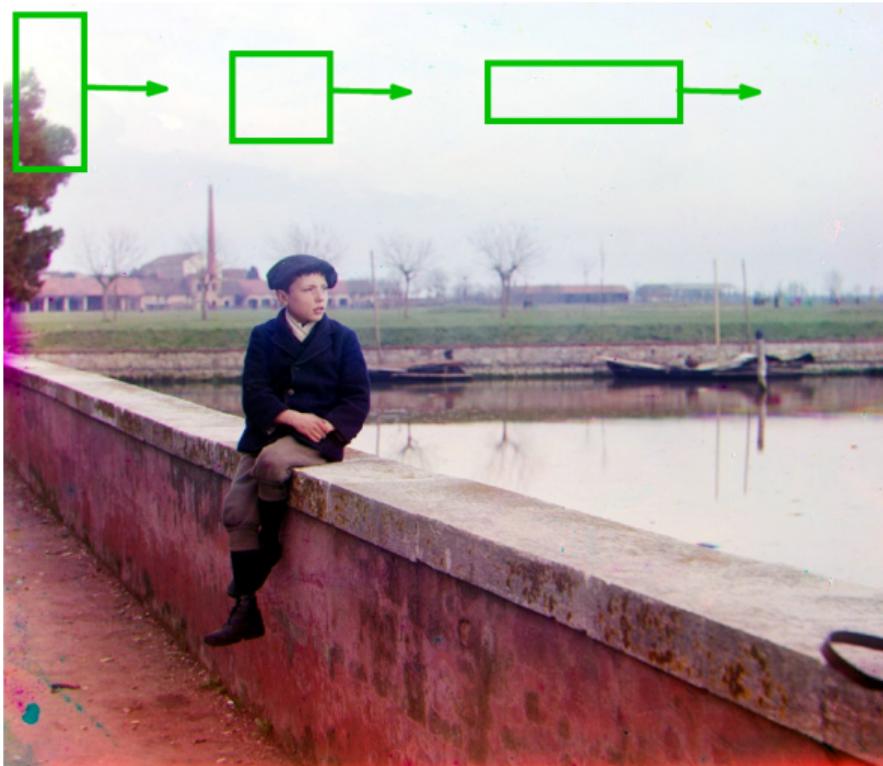
# Multiscale sliding windows



# Mutiresolution pyramid



# Multiple aspect ratios



# Non-maximum suppression (NMS)

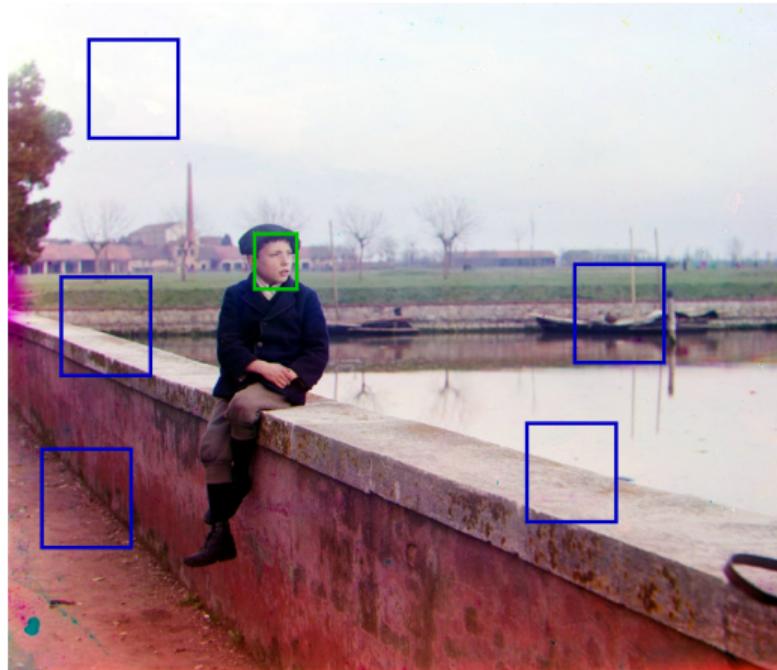


Loop:

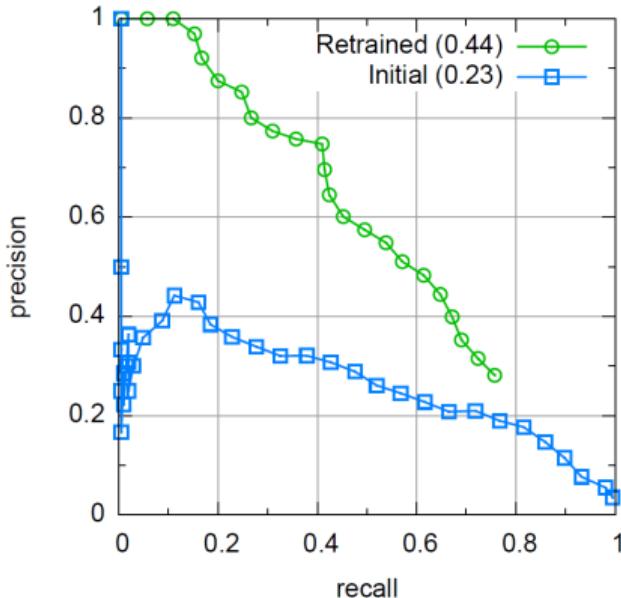
choose window with max confidence

remove all windows that intersect with chosen window

# Imbalanced classes



# Hard negative mining



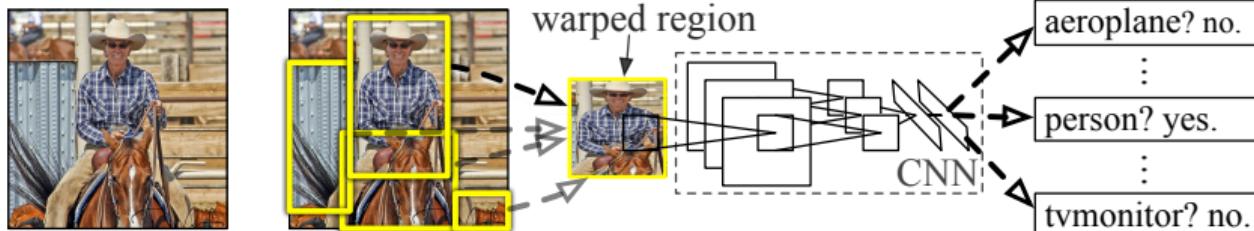
1. Choose random background samples
2. Train classifier
3. Loop:
  - 3.1 Evaluate detector on train images
  - 3.2 Choose hard false positive samples, add to classifier training sample
  - 3.3 Retrain classifier

# Outline

- I. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

# R-CNN

## R-CNN: *Regions with CNN features*



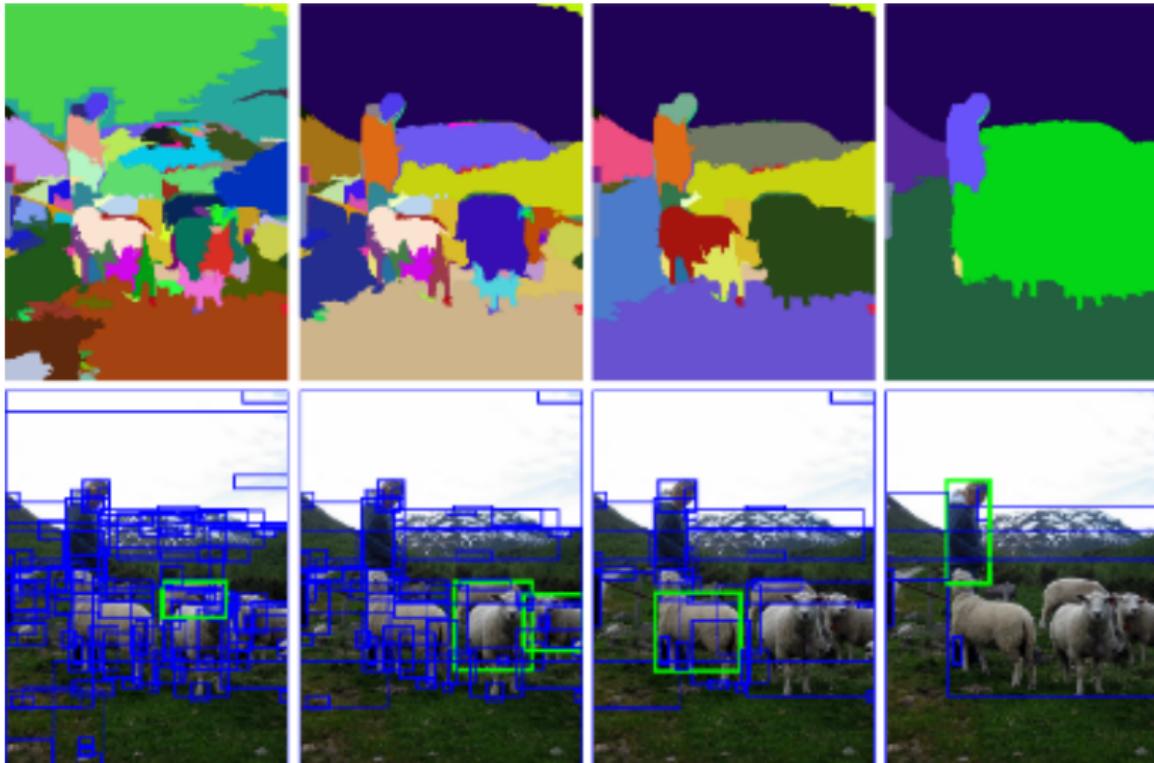
1. Input image

2. Extract region proposals (~2k)

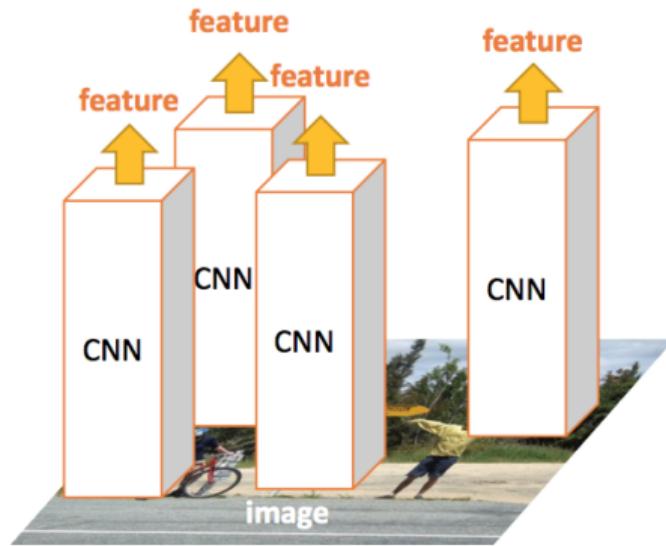
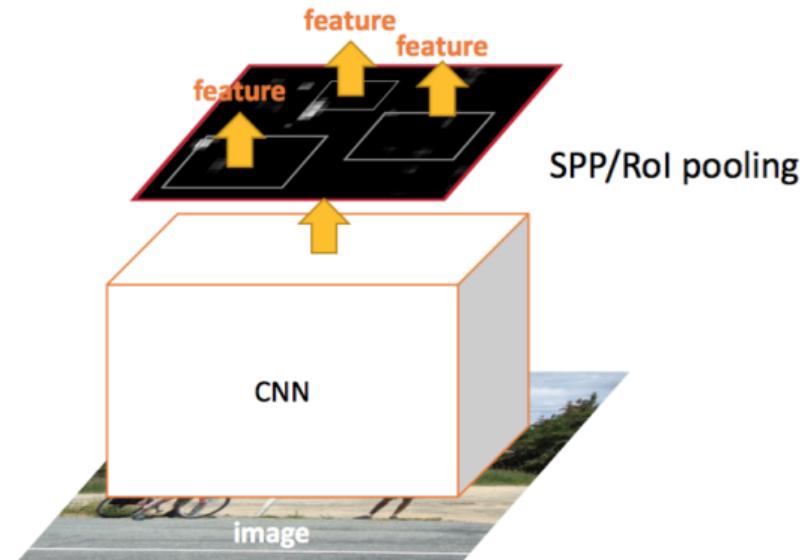
3. Compute CNN features

4. Classify regions

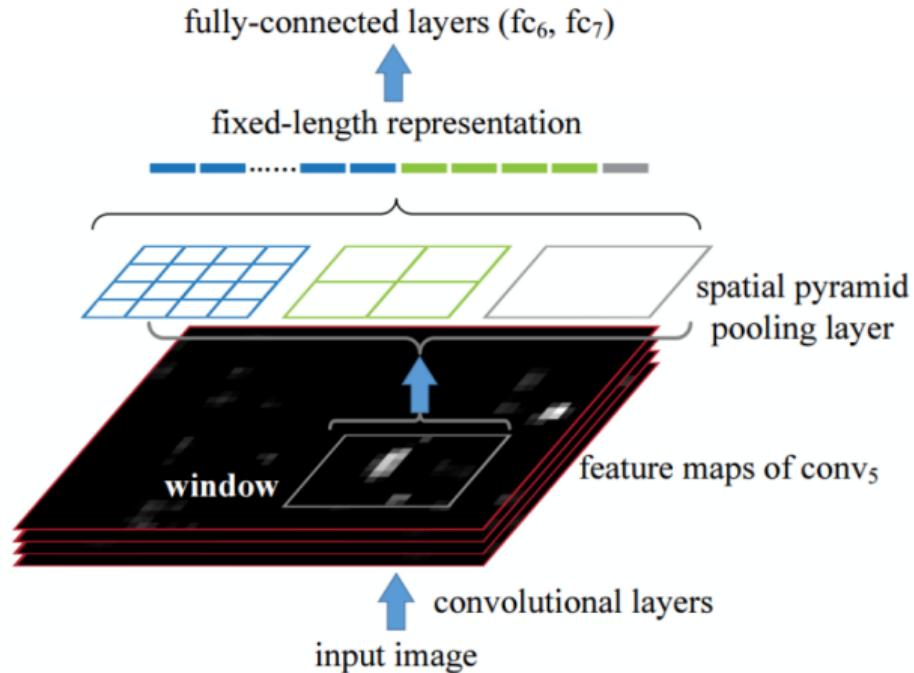
# Selective Search



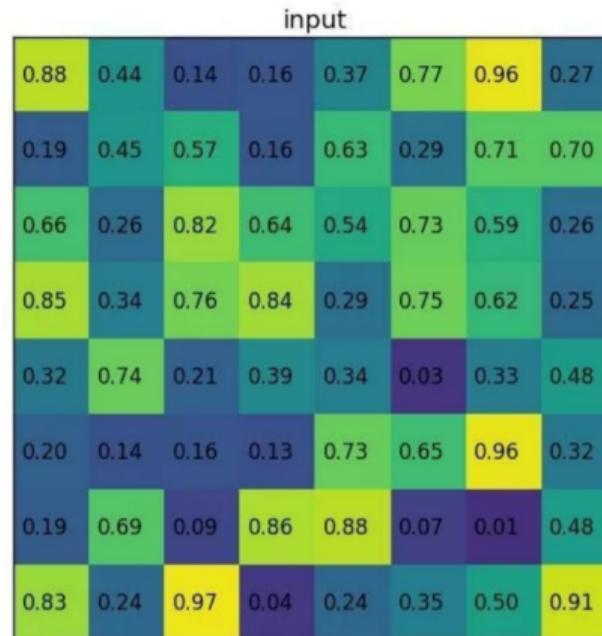
# Fast R-CNN



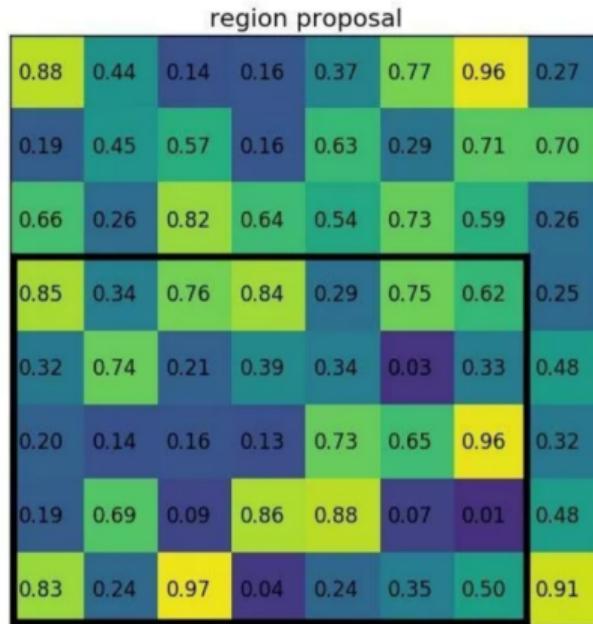
# Spatial Pyramid Pooling



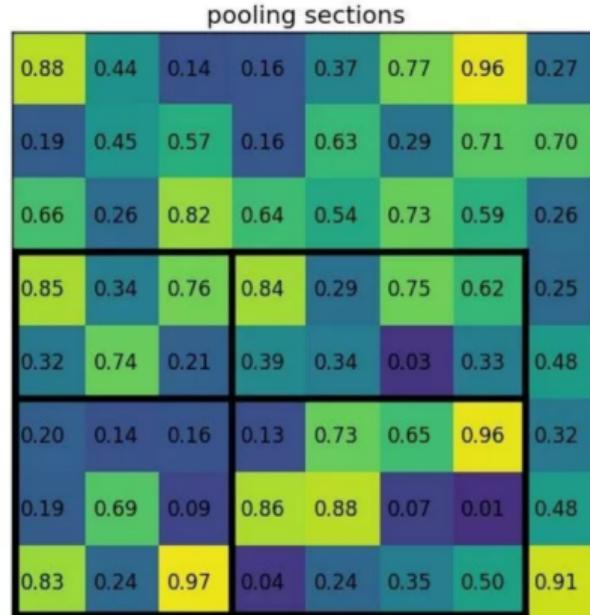
# RoI pooling



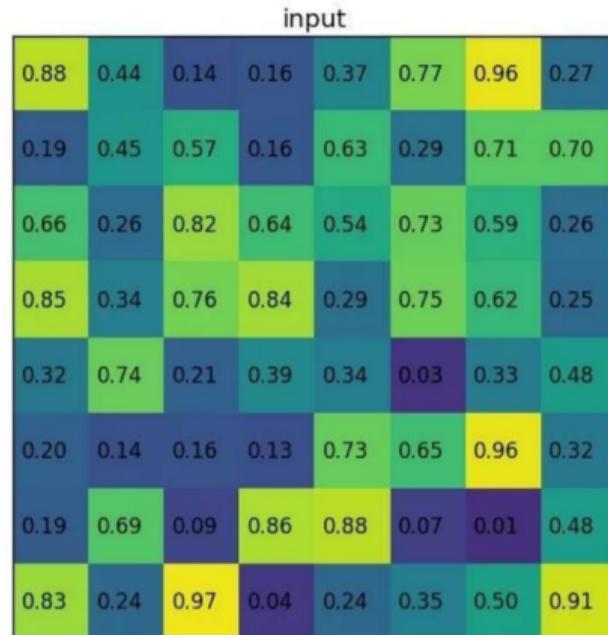
# RoI pooling



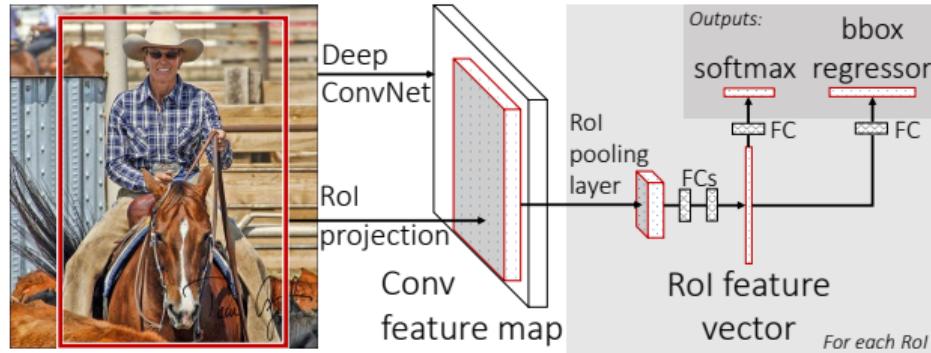
# RoI pooling



# RoI align



# Fast R-CNN architecture



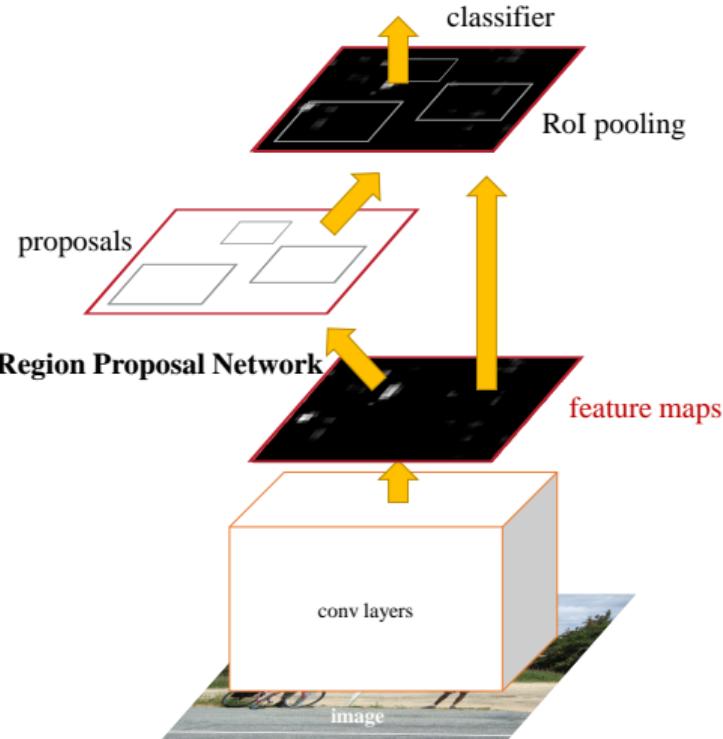
## Key ideas:

- compute CNN features over whole image
- use RoI pooling to compute features for region
- train a neural network on top of features for bbox classification and regression

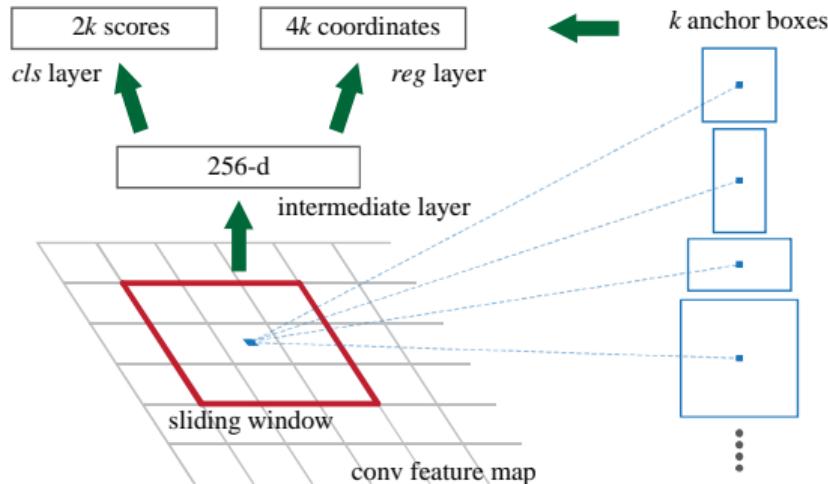
# R-CNN and Fast R-CNN comparison

|                    | R-CNN | Fast R-CNN |
|--------------------|-------|------------|
| Training time      | 84h   | 8.75h      |
| Testing per image  | 47s   | 0.32s      |
| + selective search | 49s   | 2.32s      |
| Test mAP           | 66.0% | 68.1%      |

# Faster R-CNN



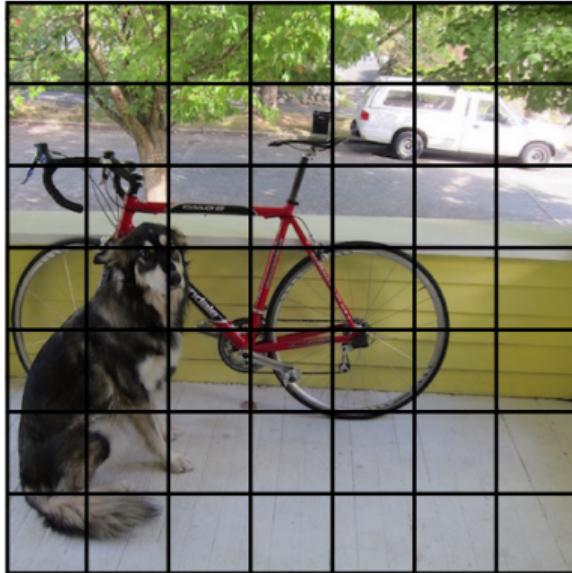
# Region Proposal Network



# Outline

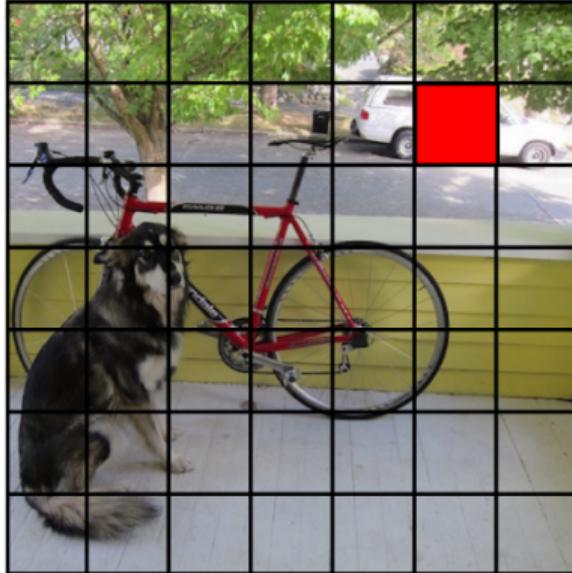
1. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

# You Only Look Once (YOLO)



Split image into cells

# You Only Look Once (YOLO)



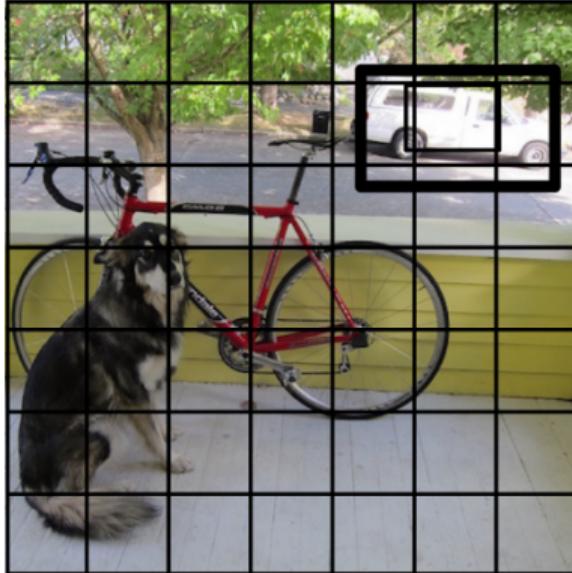
For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



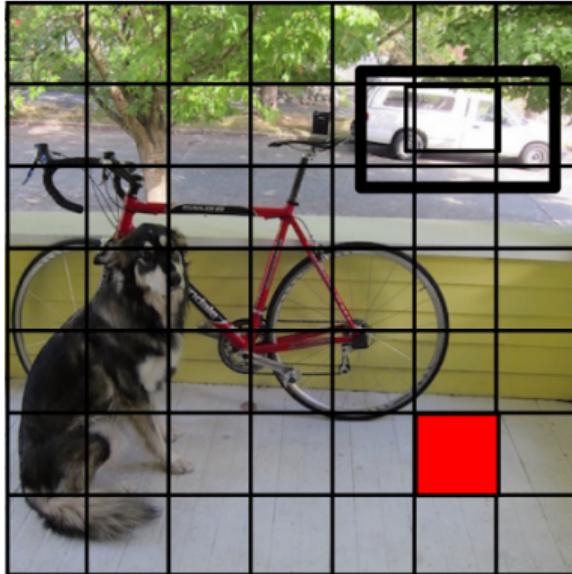
For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



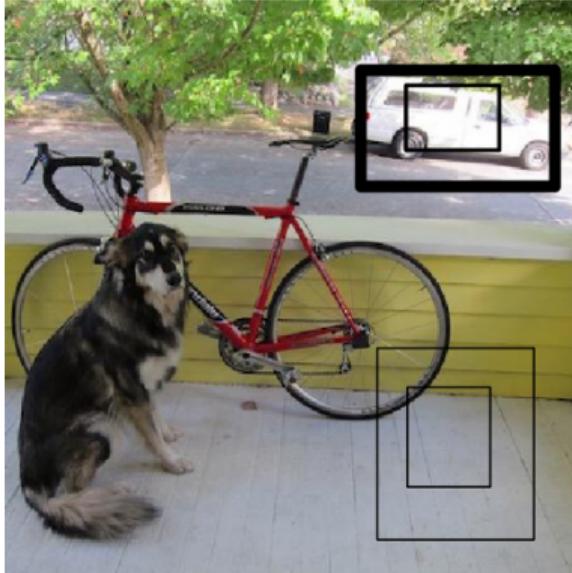
For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



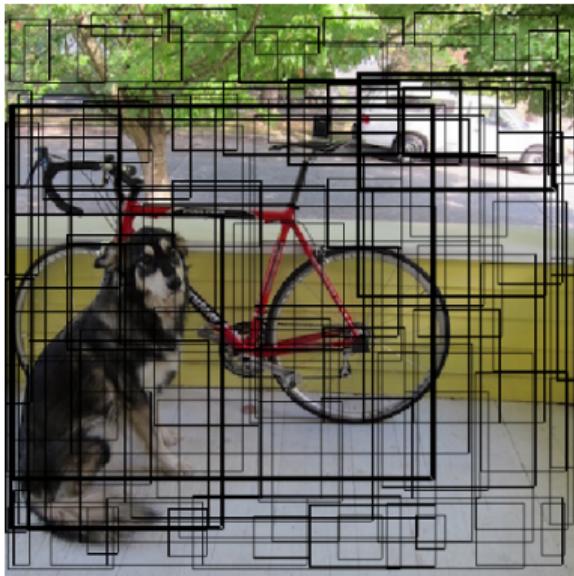
For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



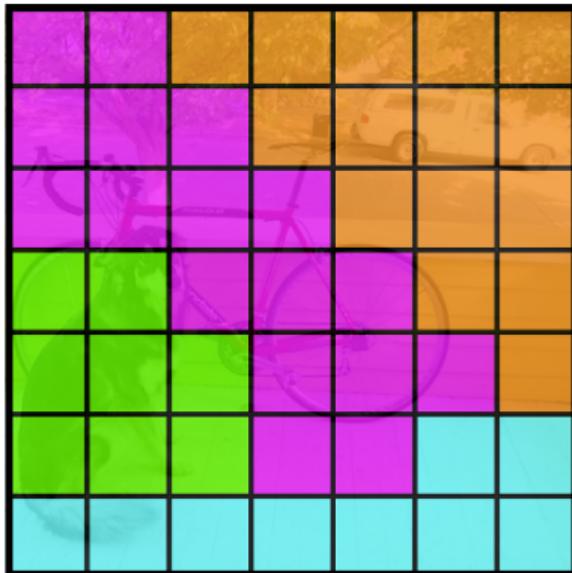
For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



For every cell predict  $P(\text{Object})$  and bboxes

# You Only Look Once (YOLO)



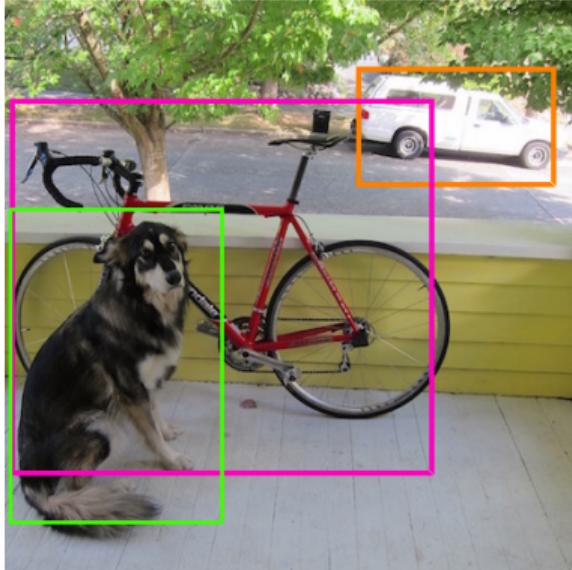
For every cell also predict  $P(\text{Class})$

# You Only Look Once (YOLO)



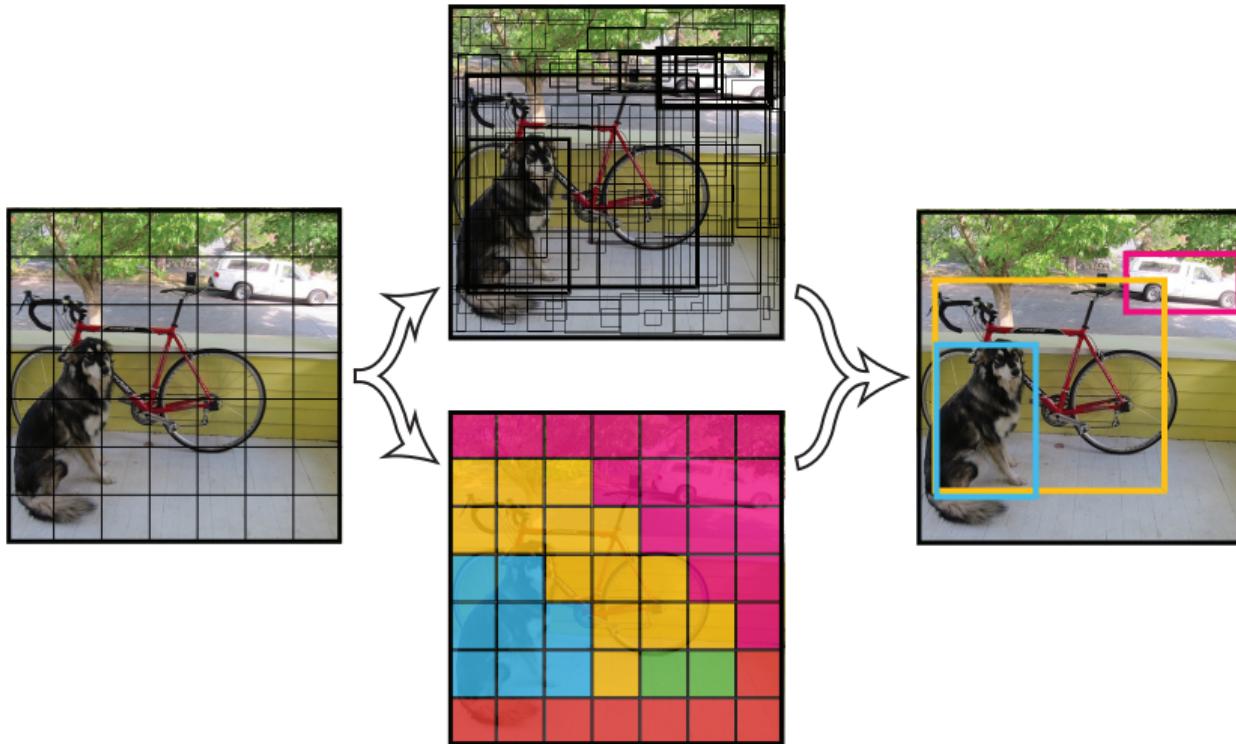
Combine bboxes and class probabilities

# You Only Look Once (YOLO)

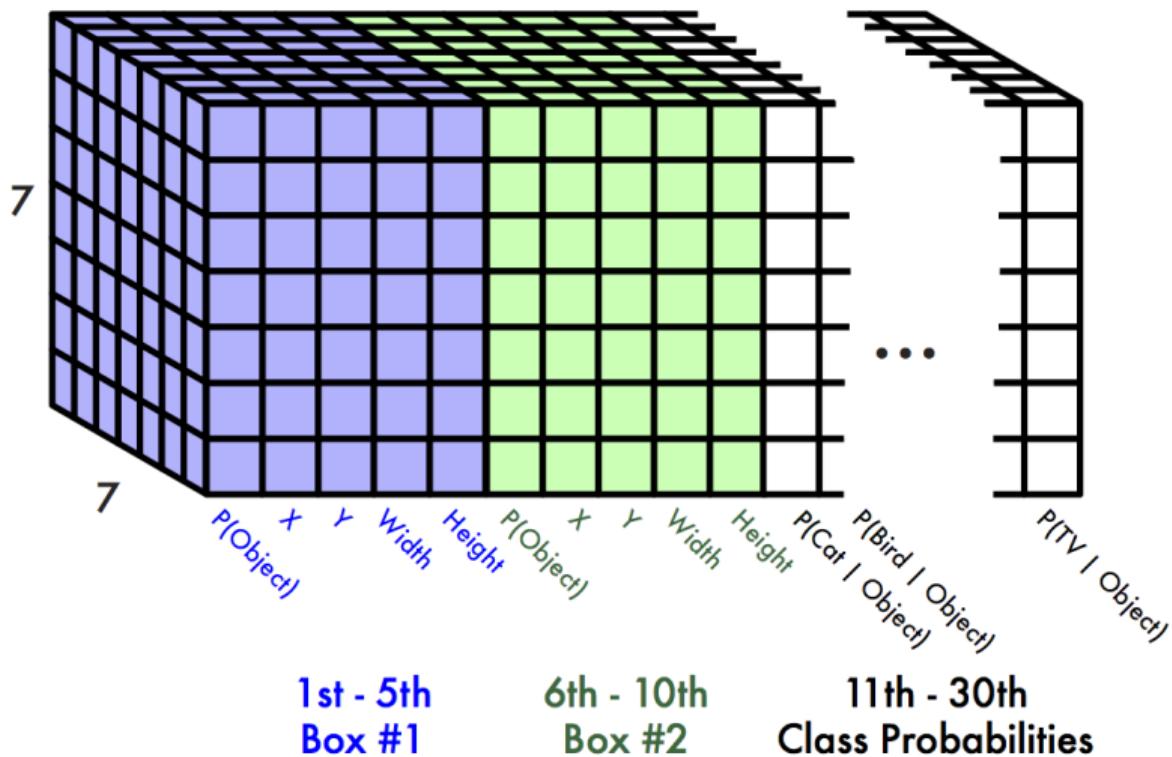


Apply NMS and probability thresholding

# You Only Look Once (YOLO)



# YOLO outputs

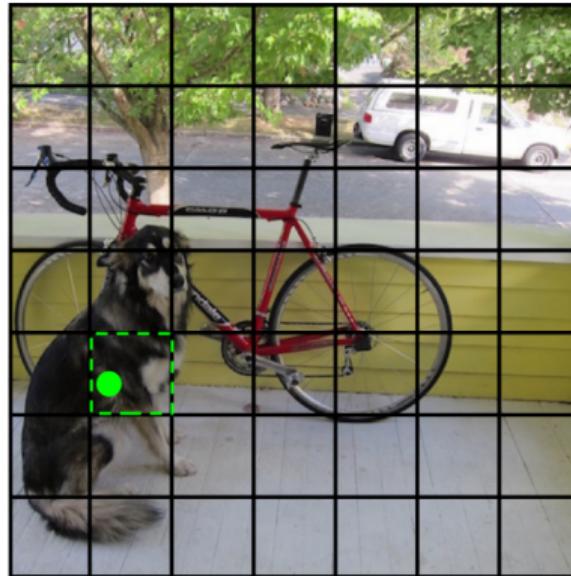


# YOLO training



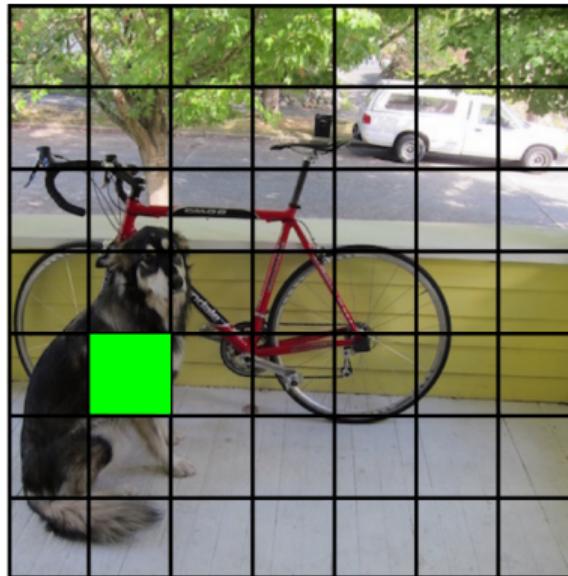
Find a cell for a training sample

# YOLO training



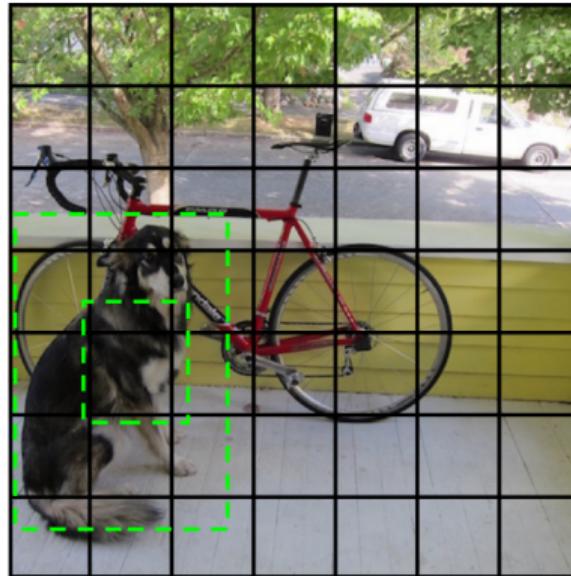
Find a cell for a training sample

# YOLO training



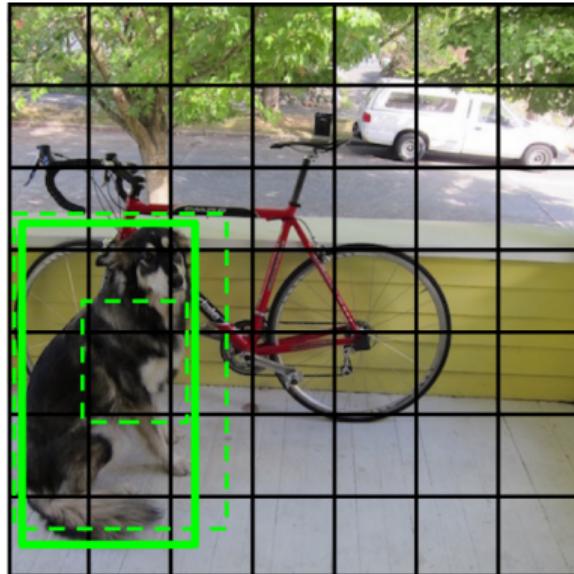
Define probability vector using that training sample

# YOLO training



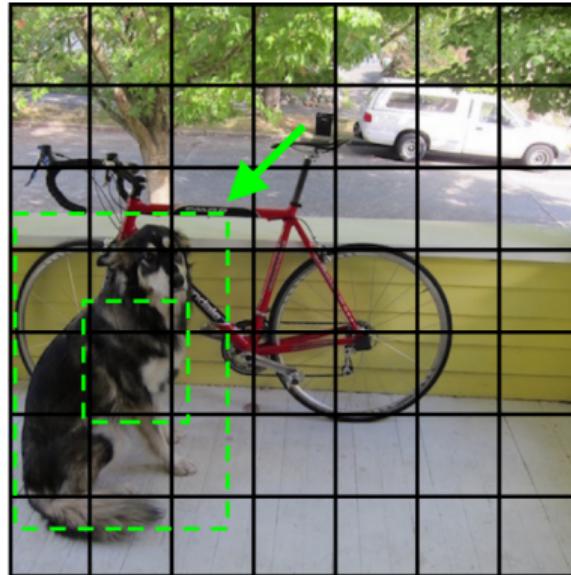
Look at predicted bboxes for that cell

# YOLO training



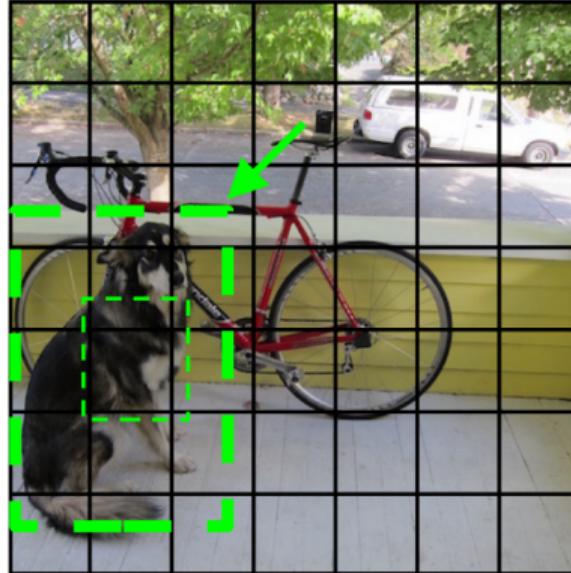
Find nearest bbox

# YOLO training



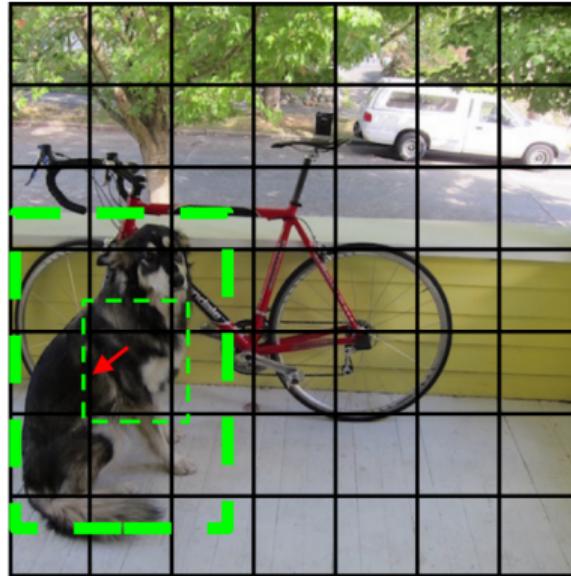
Find nearest bbox

# YOLO training



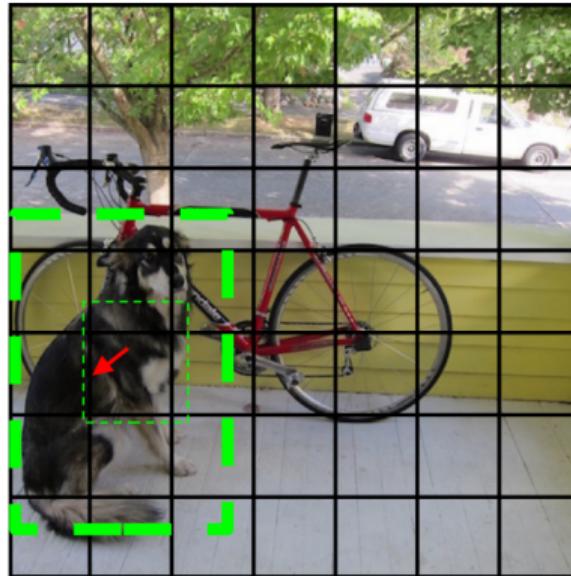
And increase  $P(\text{Object})$  for that bbox

# YOLO training



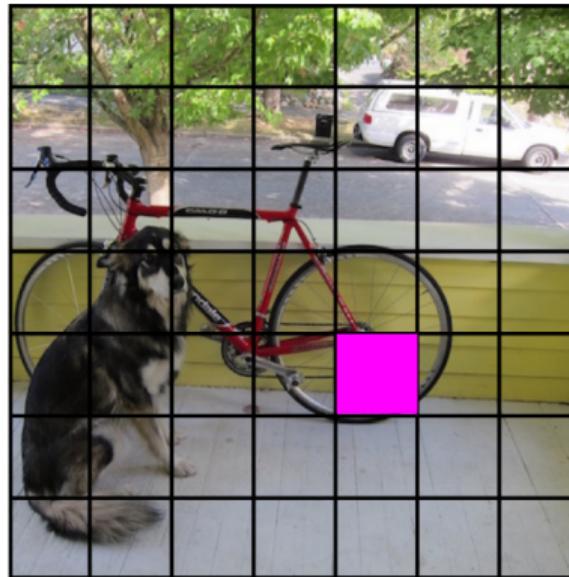
Lower  $P(\text{Object})$  for other bboxes

# YOLO training



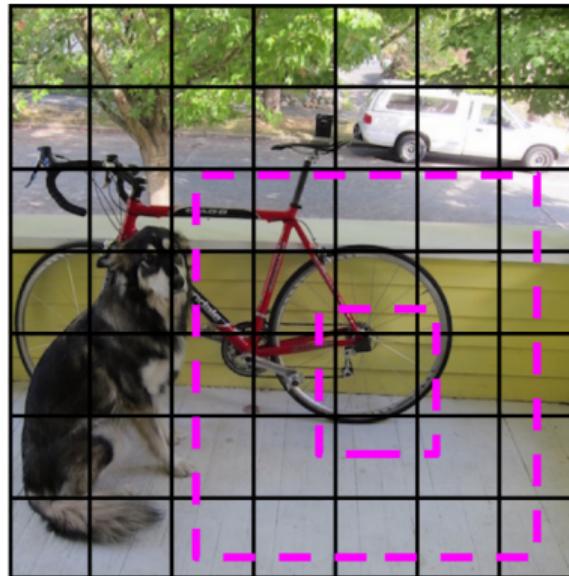
Lower  $P(\text{Object})$  for other bboxes

# YOLO training



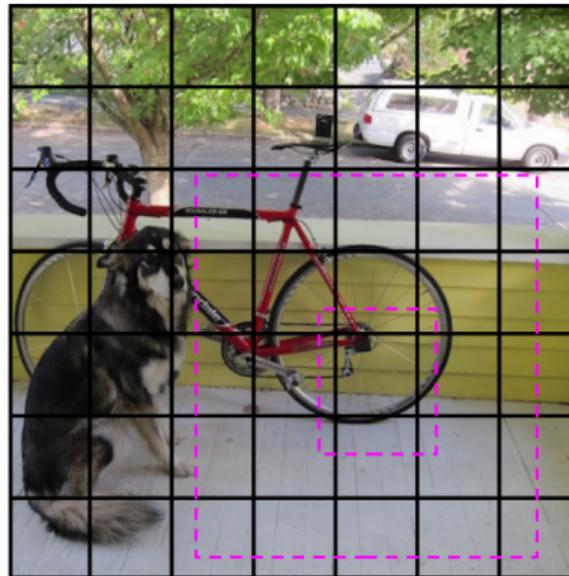
Some cells don't have corresponding training samples

# YOLO training



Lower  $P(\text{Object})$  for bboxes in these cells

# YOLO training



Lower  $P(\text{Object})$  for bboxes in these cells

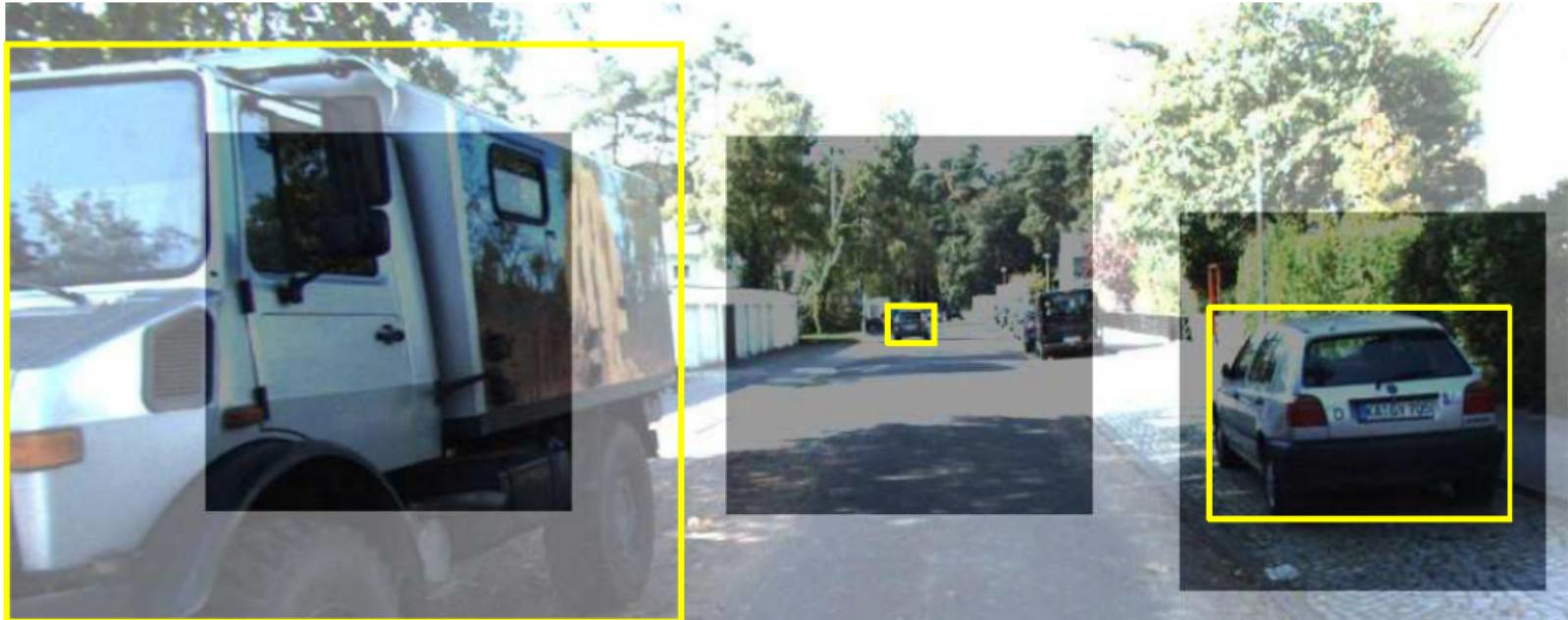
# Comparison with other methods

|              | Pascal 2007 mAP | Speed    |
|--------------|-----------------|----------|
| DPM v5       | 33.7            | 0.07 FPS |
| R-CNN        | 66.0            | 0.05 FPS |
| Fast R-CNN   | 70.0            | 0.5 FPS  |
| Faster R-CNN | 73.2            | 7 FPS    |
| YOLO         | 69.0            | 45 FPS   |

# Outline

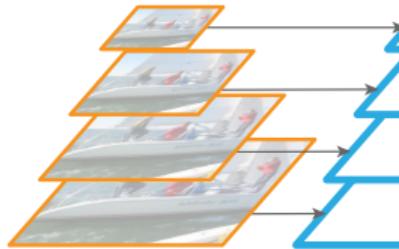
1. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

# Feature pyramids

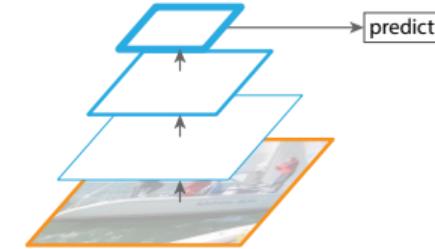


Network receptive field size isn't always similar to object size

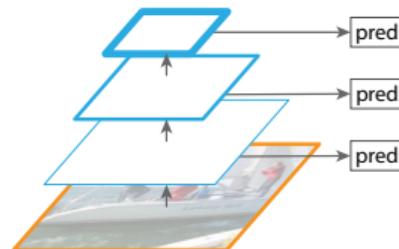
# Feature pyramids



(a) Featurized image pyramid



(b) Single feature map



(c) Pyramidal feature hierarchy

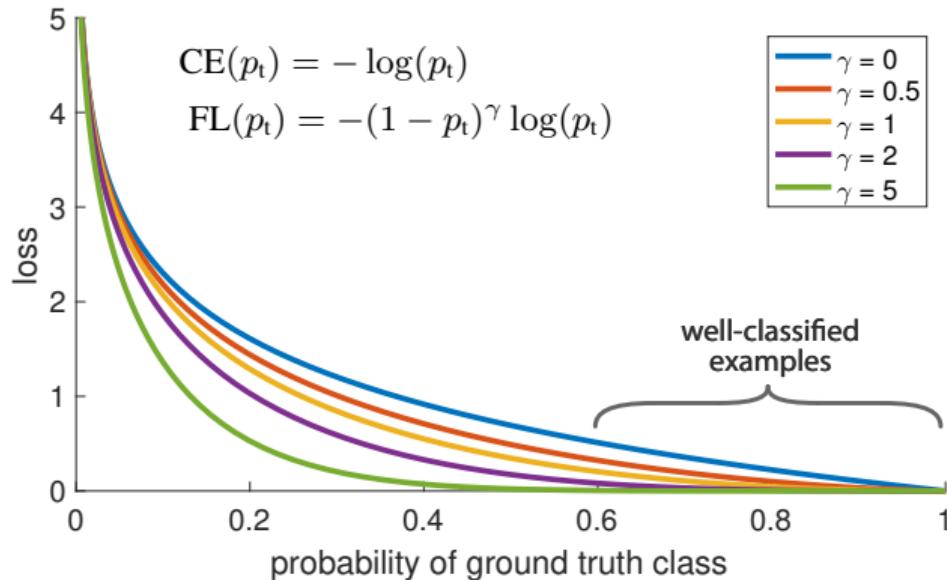


(d) Feature Pyramid Network

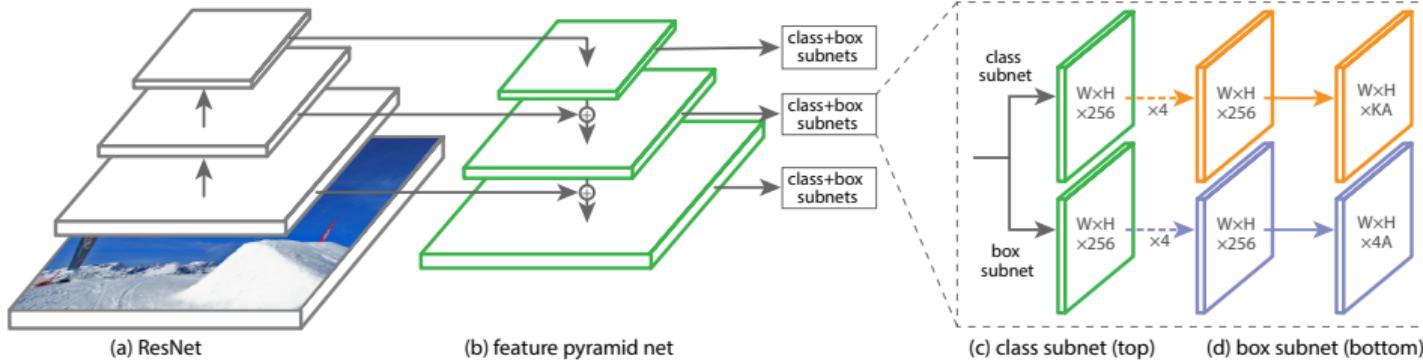
# Feature pyramids



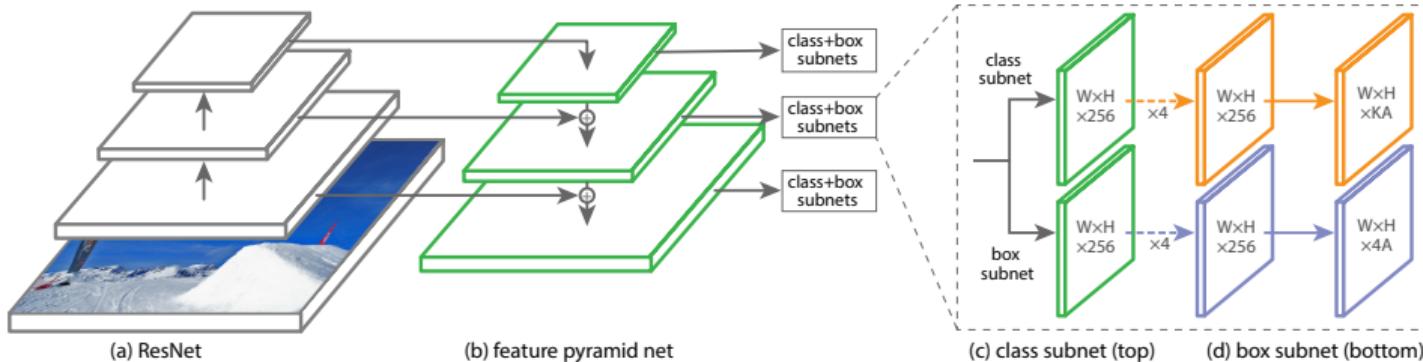
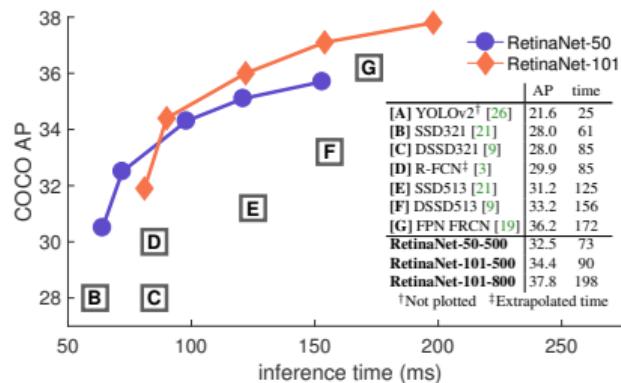
# Focal loss



# RetinaNet



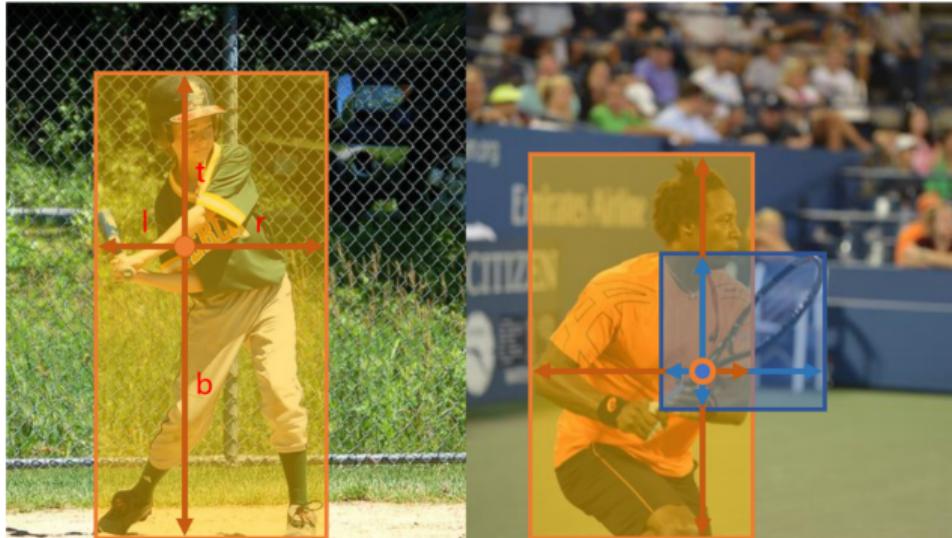
# RetinaNet



# Outline

1. Task statement, datasets and metrics
2. Object detection via classification
3. R-CNN, Fast R-CNN, Faster R-CNN
4. YOLO
5. RetinaNet
6. Anchor-free detection

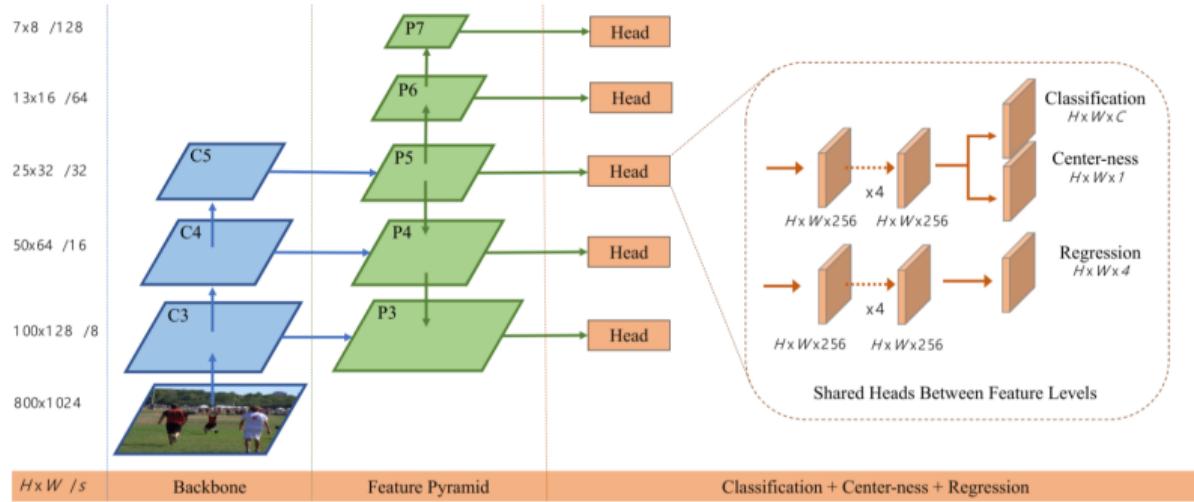
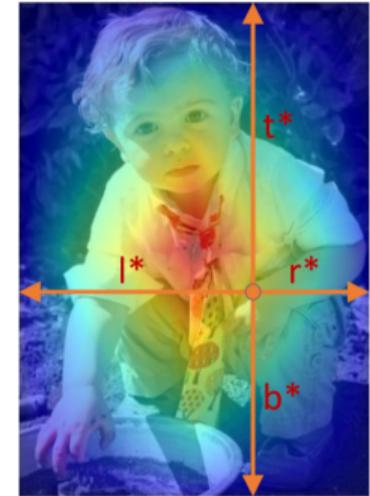
# FCOS bbox regression



Regress  $(l, t, r, b)$  vector  
in every pixel

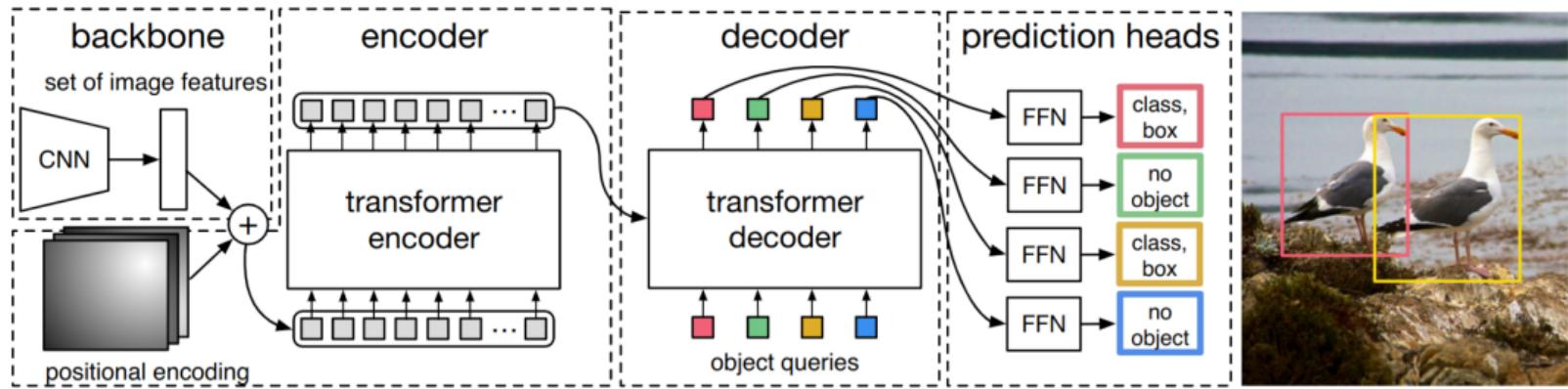
Train to predict smallest  
bbox in case of  
overlapping bboxes

# FCOS architecture

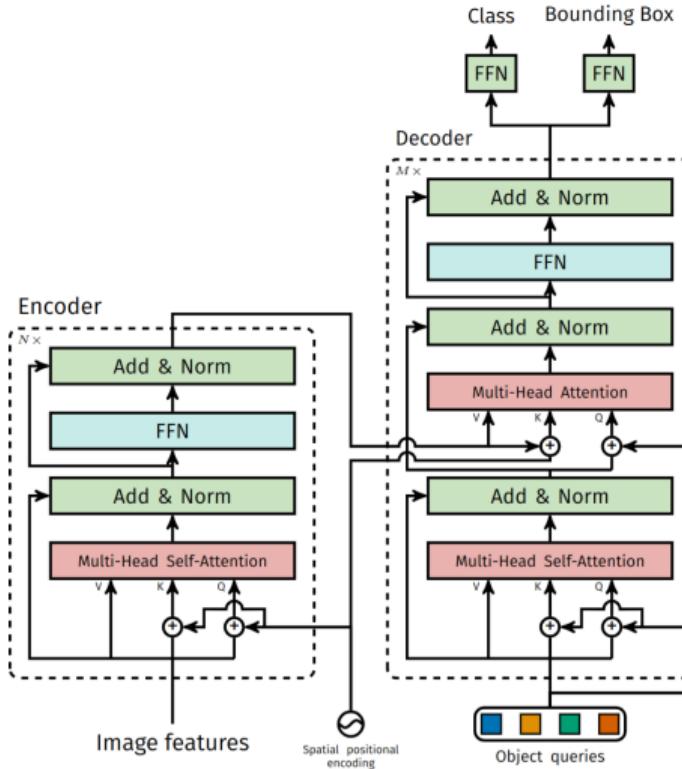


$$\text{centerness}^* = \sqrt{\frac{\min(l^*, r^*)}{\max(l^*, r^*)} \times \frac{\min(t^*, b^*)}{\max(t^*, b^*)}}$$

# DETR



# DETR



# Conclusion

We reviewed following topics:

- object detection task, metrics and datasets
- development of two-stage R-CNN detector
- single stage detector YOLO
- using feature pyramids for improving detection quality on different object resolutions
- anchor-free detectors FCOS and DETR