

Image segmentation

Vlad Shakhuro

13 November 2025

Outline

1. Superpixels

2. Semantic

3. Interactive

4. Instance

5. Panoptic

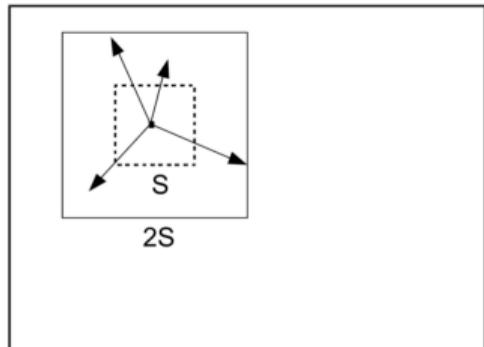
6. Human pose estimation

Superpixels (visual segmentation or oversegmentation)

Regions of image. Desired properties:

- homogeneous
- compact
- uniformly distributed over the image
- large enough to be informative
- have boundaries aligned with object boundaries
- superpixel is fully contained in one object mask
- small object are described with whole superpixels
- easily computable

SLIC (Simple Linear Iterative Clustering)



k-means with
bounded comparisons

Initialize clusters at regular grid S

Run bounded k-means:

1. Compute distances between clusters and pixels in $2S \times 2S$ area. Use CIELAB and (x, y) coordinates as feature vectors
2. Recompute clusters and amount of change (L_1 distance between old and new clusters)

Achanta et al. SLIC Superpixels. EPFL Tech Report 2010

Achanta et al. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012

SLIC results

SLIC comparison

Efficient Graph-Based

TurboPixel

QuickShift

SLIC

Outline

1. Superpixels

2. Semantic

3. Interactive

4. Instance

5. Panoptic

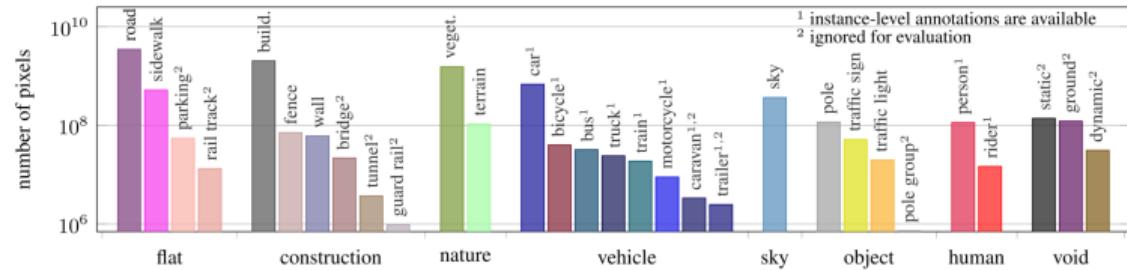
6. Human pose estimation

Cityscapes

train/val – fine annotation – 3475 images

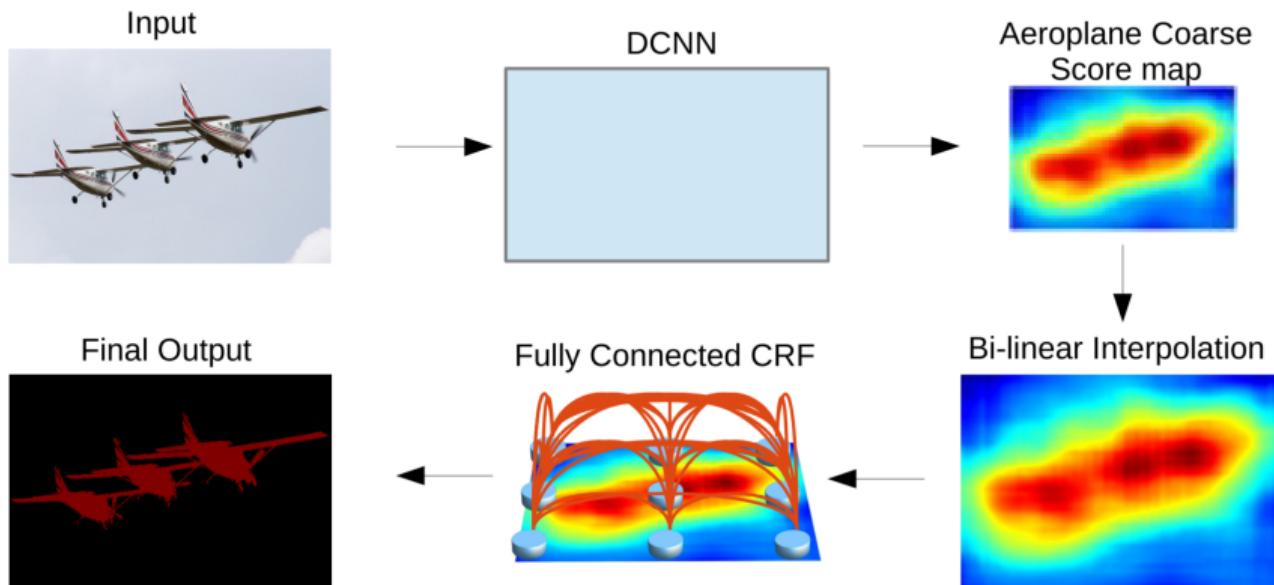
train – coarse annotation – 20 000 images

test – fine annotation – 1525 images



- images from a car from several german cities
- 30 object classes
- 5k finely labelled images
- 20k coarsely labelled images

DeepLab

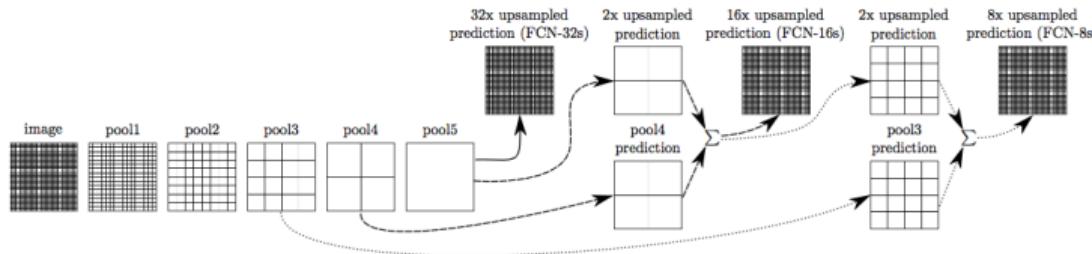
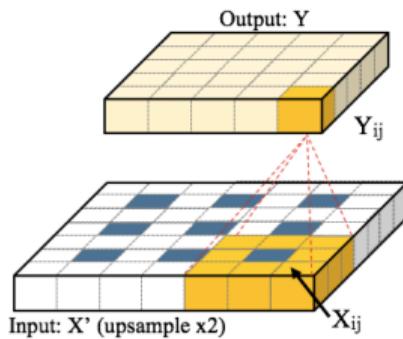
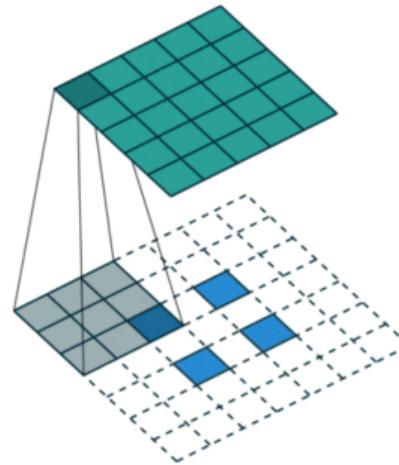


Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. TPAMI 2016

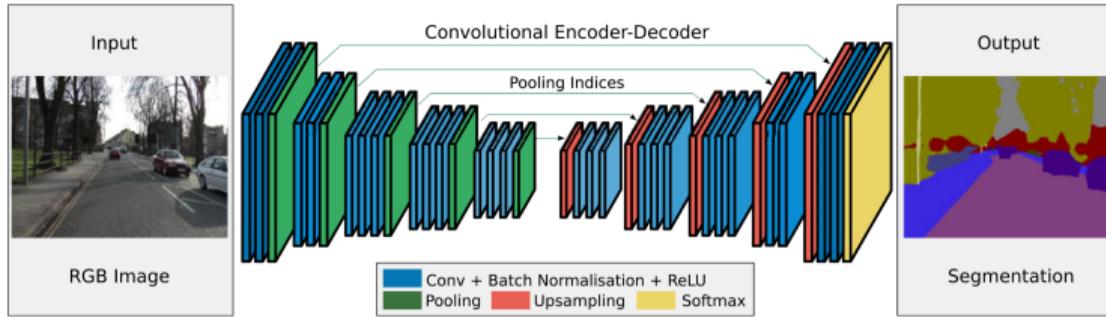
DeepLab

Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. TPAMI 2016

Fully Convolutional Networks



Segnet with unpooling



Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Input: 4 x 4

5	6
7	8

Output: 2 x 2

Rest of the network

Max Unpooling

Use positions from pooling layer

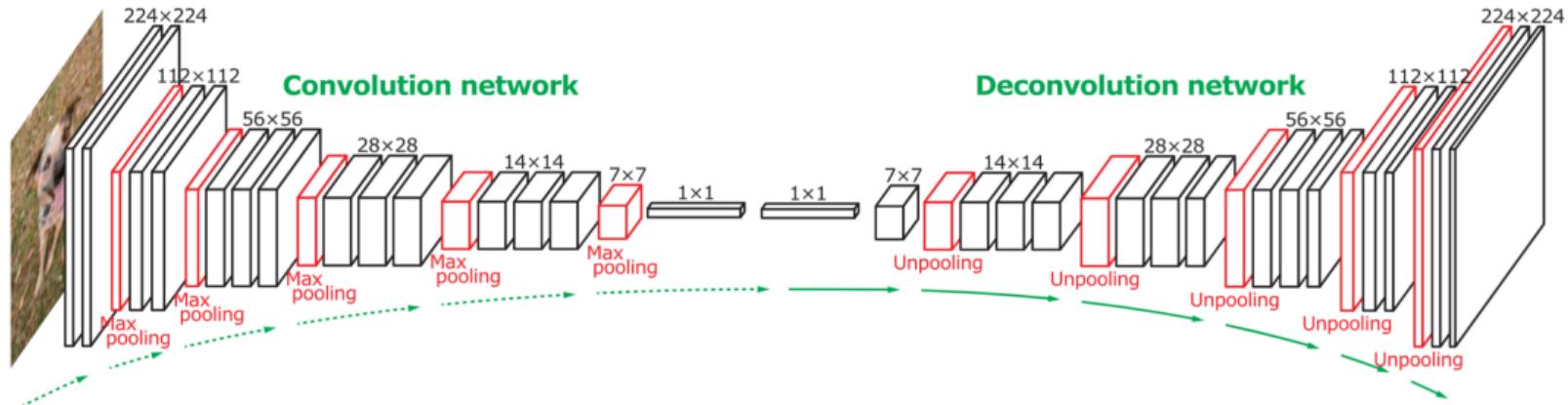
1	2
3	4

Input: 2 x 2

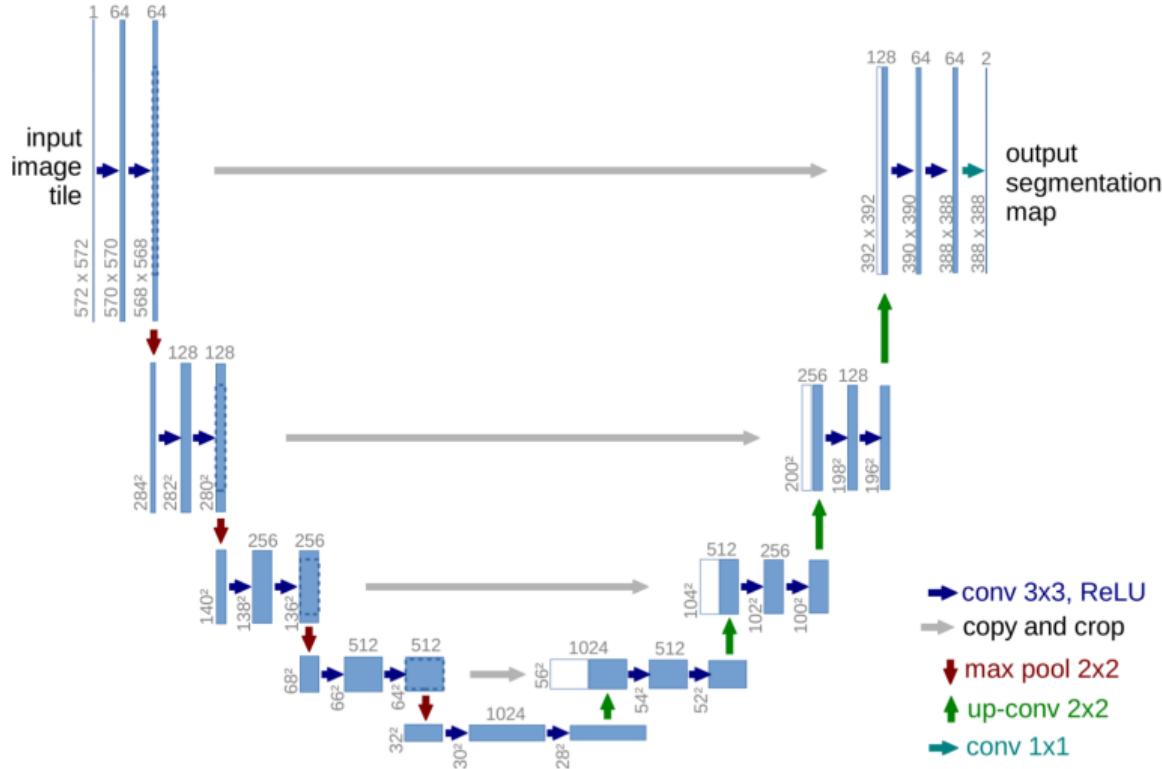
0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Output: 4 x 4

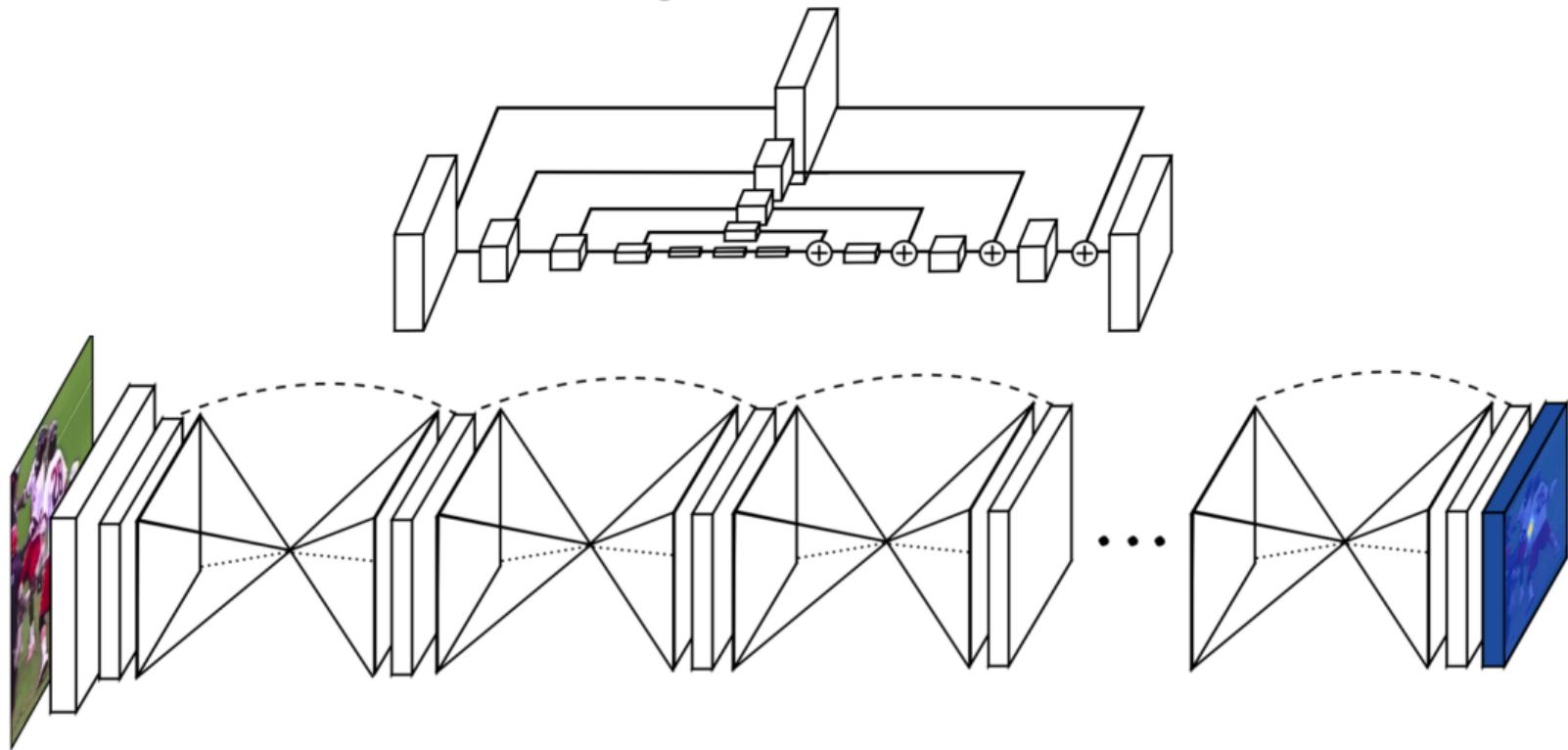
DeconvNet



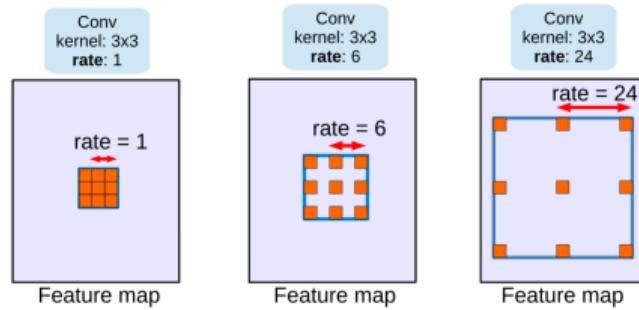
U-Net



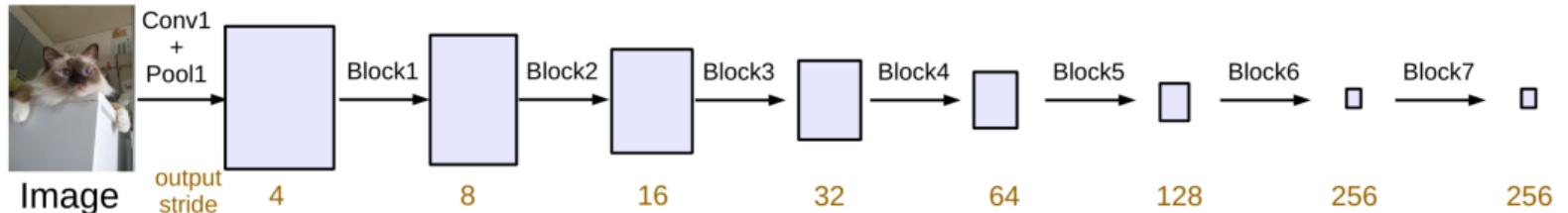
Hourglass networks



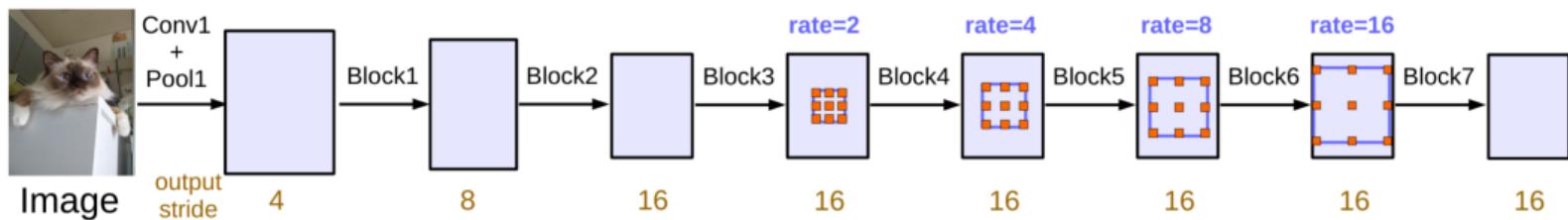
Atrous convolutions



Atrous convolutions



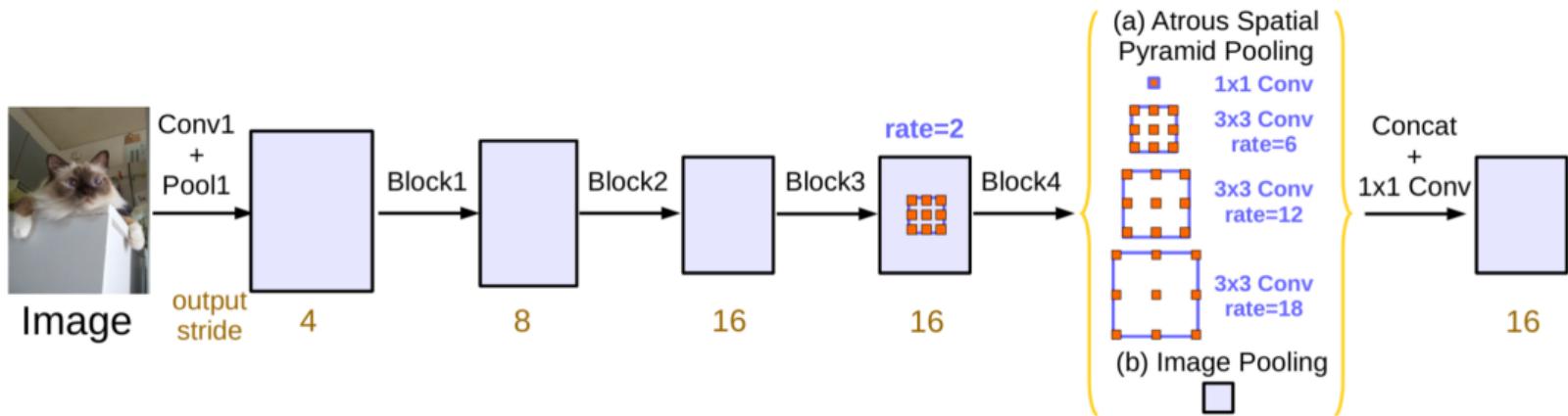
(a) Going deeper without atrous convolution.



(b) Going deeper with atrous convolution. Atrous convolution with $rate > 1$ is applied after block3 when $output_stride = 16$.

Figure 3. Cascaded modules without and with atrous convolution.

Atrous convolutions



HRNet

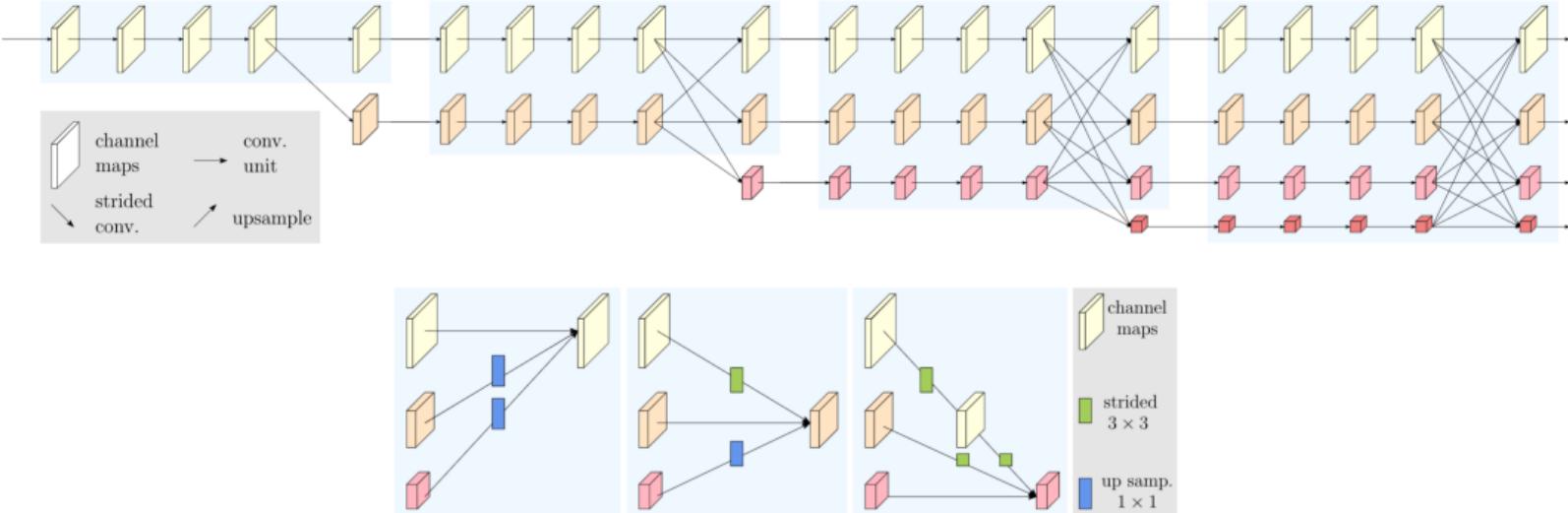
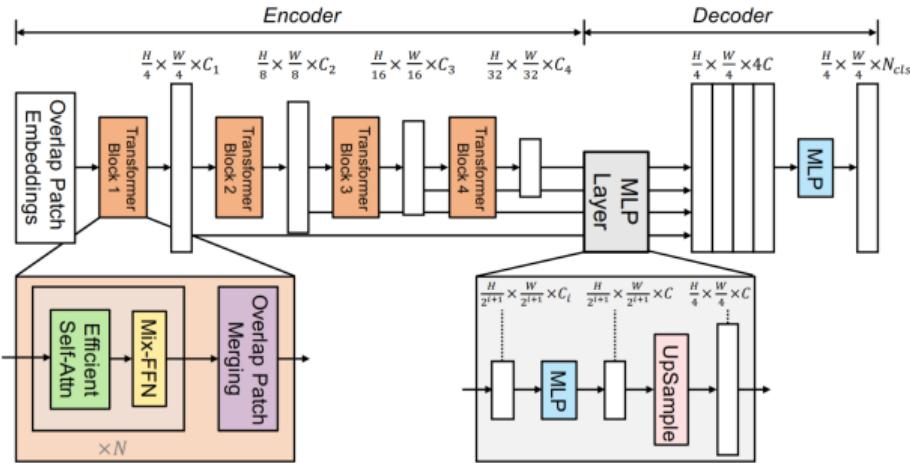


Fig. 3. Illustrating how the fusion module aggregates the information for high, medium and low resolutions from left to right, respectively. Right legend: strided 3×3 = stride-2 3×3 convolution, up samp. 1×1 = bilinear upsampling followed by a 1×1 convolution.

SegFormer



Efficient SA:

$$SA = \text{softmax}(qk^T / \sqrt{D_h})v$$

$$k = \text{Reshape}(\frac{N}{R}, C \cdot R)(k)$$

$$k = \text{Linear}(C \cdot R, C)(k)$$

Mix-FFN:

$$MLP(Conv_{3 \times 3}(MLP(x))) + x$$

SegFormer

	Output Size	Layer Name	Mix Transformer						
			B0	B1	B2	B3	B4	B5	
Stage 1	$\frac{H}{4} \times \frac{W}{4}$	Overlapping Patch Embedding	$K_1 = 7; S_1 = 4; P_1 = 3$						
			$C_1 = 32$	$C_1 = 64$					
		Transformer Encoder	$R_1 = 8$ $N_1 = 1$ $E_1 = 8$ $L_1 = 2$	$R_1 = 8$ $N_1 = 1$ $E_1 = 8$ $L_1 = 3$	$R_1 = 8$ $N_1 = 1$ $E_1 = 8$ $L_1 = 3$	$R_1 = 8$ $N_1 = 1$ $E_1 = 8$ $L_1 = 3$	$R_1 = 8$ $N_1 = 1$ $E_1 = 8$ $L_1 = 3$	$R_1 = 8$ $N_1 = 1$ $E_1 = 4$ $L_1 = 3$	
Stage 2	$\frac{H}{8} \times \frac{W}{8}$	Overlapping Patch Embedding	$K_2 = 3; S_2 = 2; P_2 = 1$						
			$C_2 = 64$	$C_2 = 128$					
		Transformer Encoder	$R_2 = 4$ $N_2 = 2$ $E_2 = 8$ $L_2 = 2$	$R_2 = 4$ $N_2 = 2$ $E_2 = 8$ $L_2 = 2$	$R_2 = 4$ $N_2 = 2$ $E_2 = 8$ $L_2 = 3$	$R_2 = 4$ $N_2 = 2$ $E_2 = 8$ $L_2 = 3$	$R_2 = 4$ $N_2 = 2$ $E_2 = 8$ $L_2 = 8$	$R_2 = 4$ $N_2 = 2$ $E_2 = 4$ $L_2 = 6$	
Stage 3	$\frac{H}{16} \times \frac{W}{16}$	Overlapping Patch Embedding	$K_3 = 3; S_3 = 2; P_3 = 1$						
			$C_3 = 160$	$C_3 = 320$					
		Transformer Encoder	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 2$	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 2$	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 6$	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 18$	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 27$	$R_3 = 2$ $N_3 = 5$ $E_3 = 4$ $L_3 = 40$	
Stage 4	$\frac{H}{32} \times \frac{W}{32}$	Overlapping Patch Embedding	$K_4 = 3; S_4 = 2; P_4 = 1$						
			$C_4 = 256$	$C_4 = 512$					
		Transformer Encoder	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 2$	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 2$	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 3$	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 3$	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 3$	$R_4 = 1$ $N_4 = 8$ $E_4 = 4$ $L_4 = 3$	

Outline

1. Superpixels
2. Semantic
3. Interactive
4. Instance
5. Panoptic
6. Human pose estimation

Interactive segmentation

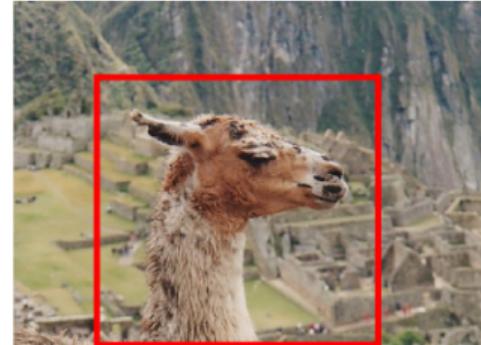


Applications:

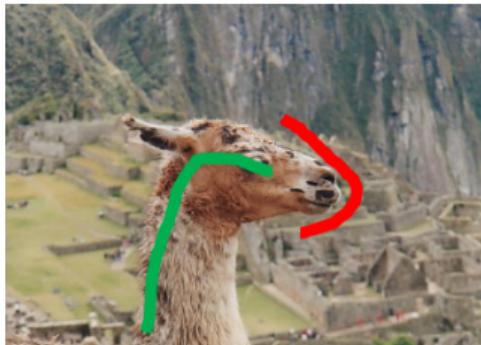
- stickers
- inpainting
- fast labelling

UI types

clicks



bbox

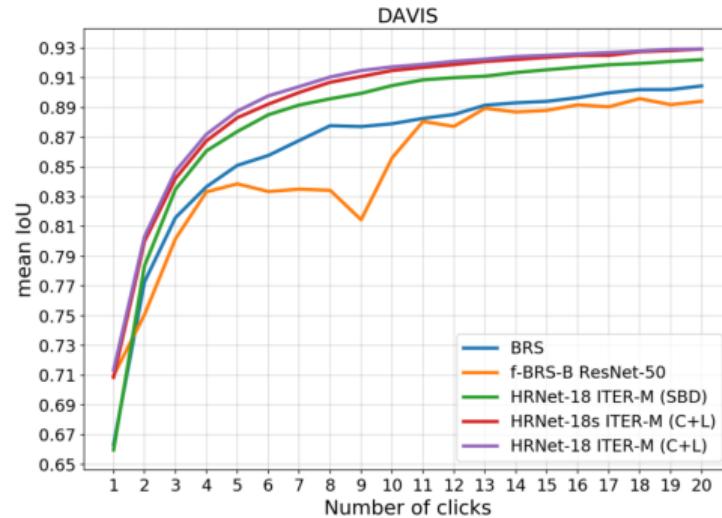


strokes

contour

Datasets and metrics

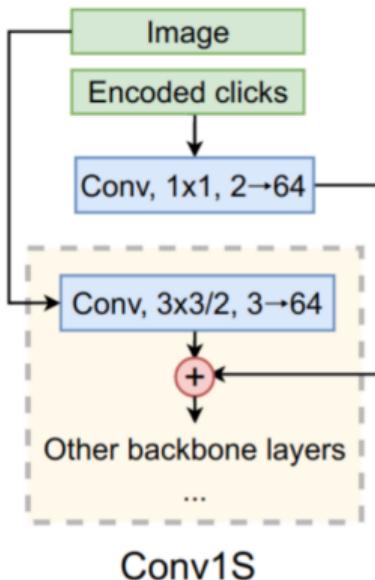
Berkeley — 50 images
GrabCut — 100 images
DAVIS — 345 images
SBD — 2857 images, 6671 masks



NoC@0.9 — average number of clicks to reach IoU 0.9

#images ≥ 20 — number of images with IoU < 0.9 within 20 clicks

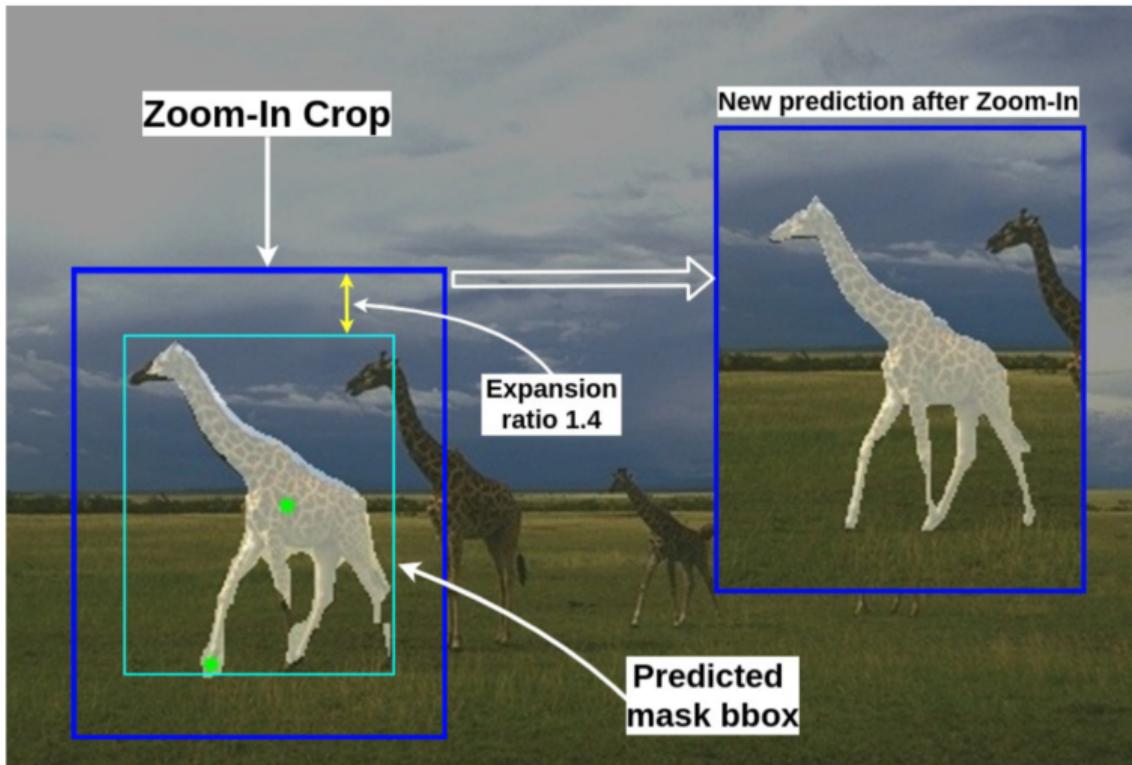
RITM



Key ideas:

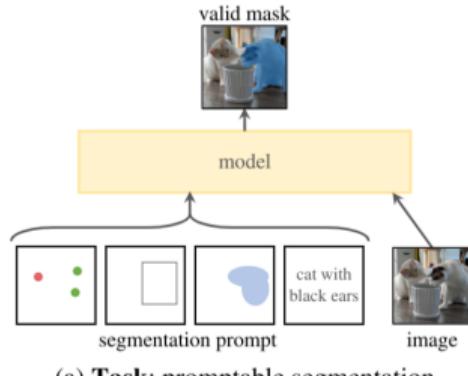
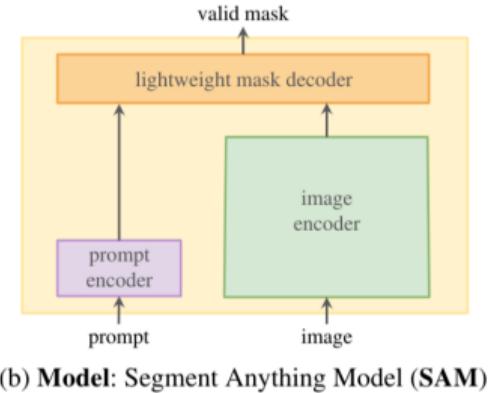
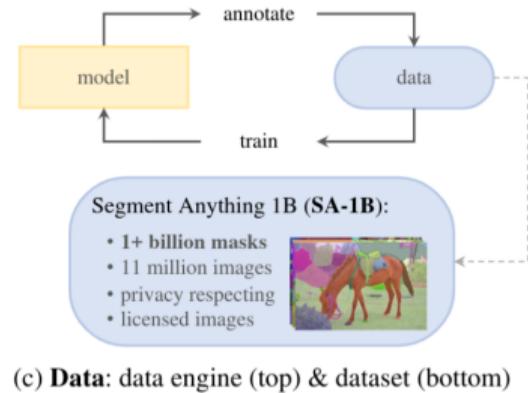
- **click encoding**
- **iterative training**
- **using mask from previous step**
- **usage of modern dataset (COCO+LVIS) for training**

Zoom-In

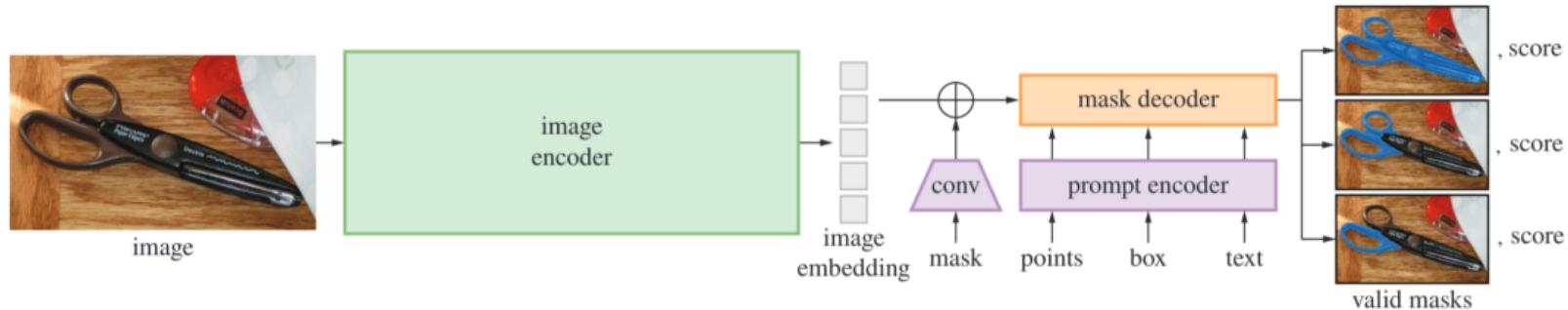


RITM examples

SegmentAnything



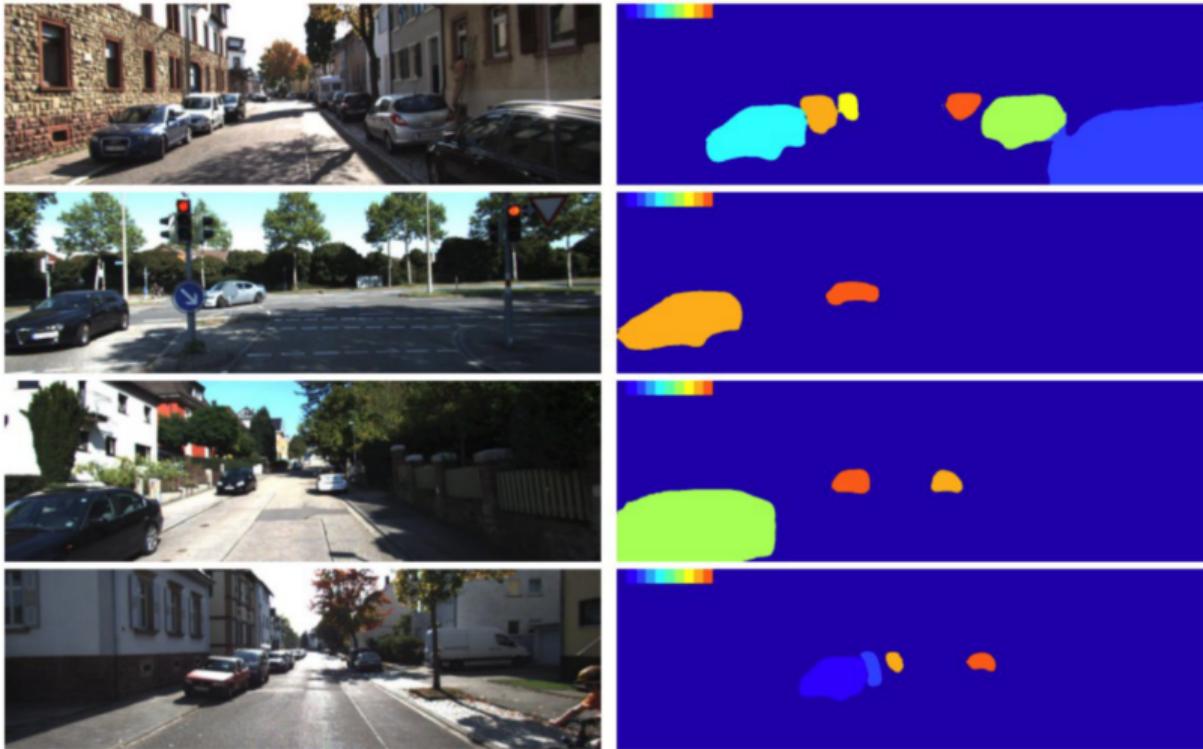
SegmentAnything



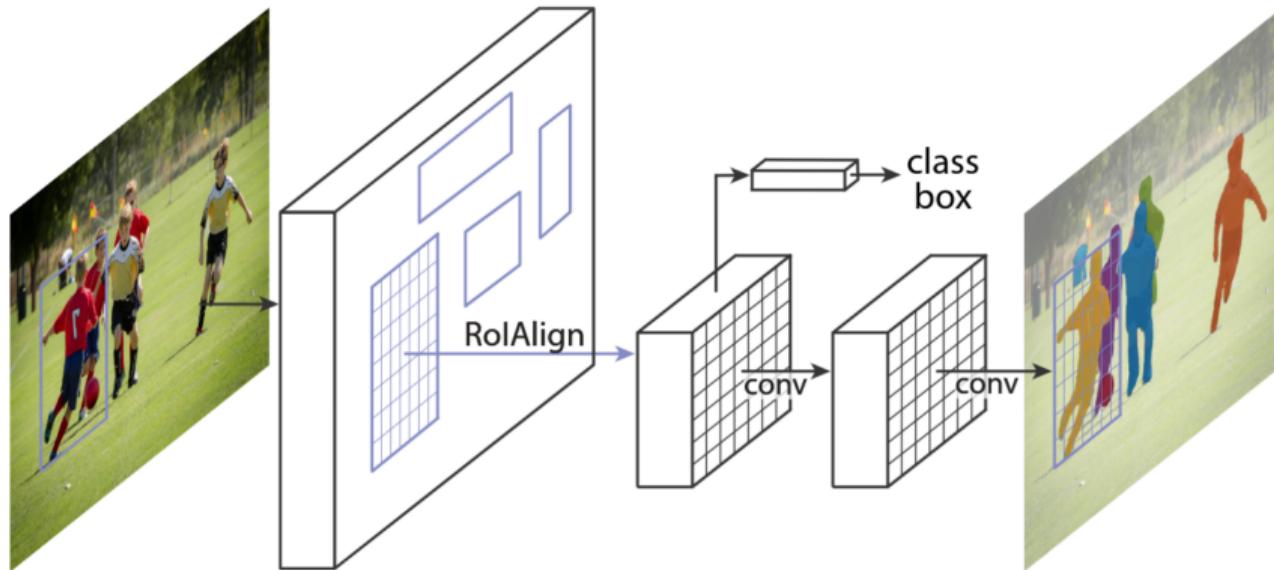
Outline

1. Superpixels
2. Semantic
3. Interactive
4. Instance
5. Panoptic
6. Human pose estimation

Instance segmentation



Mask R-CNN



Mask R-CNN results

Outline

1. Superpixels
2. Semantic
3. Interactive
4. Instance
5. Panoptic
6. Human pose estimation

Panoptic Feature Pyramid Networks

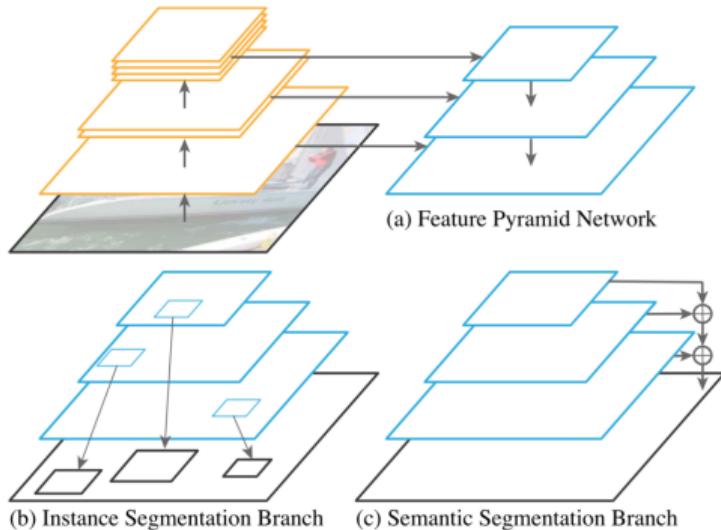
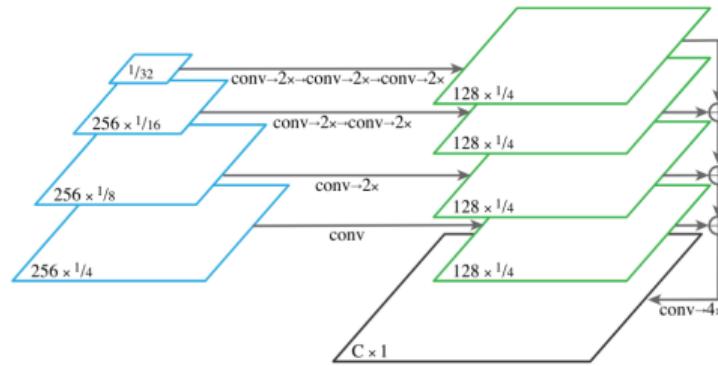
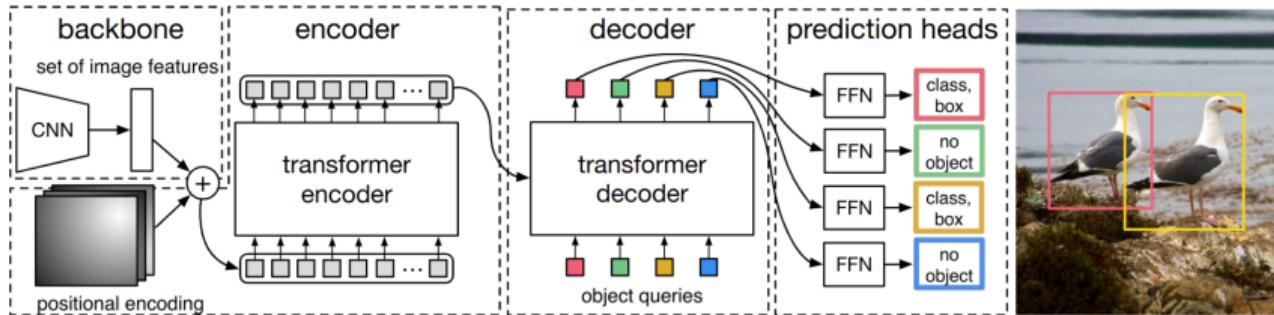
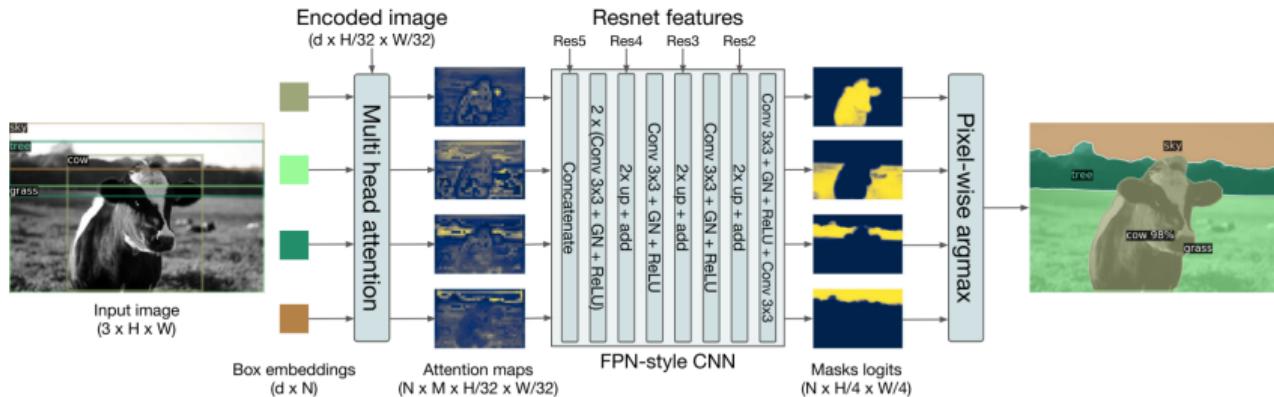
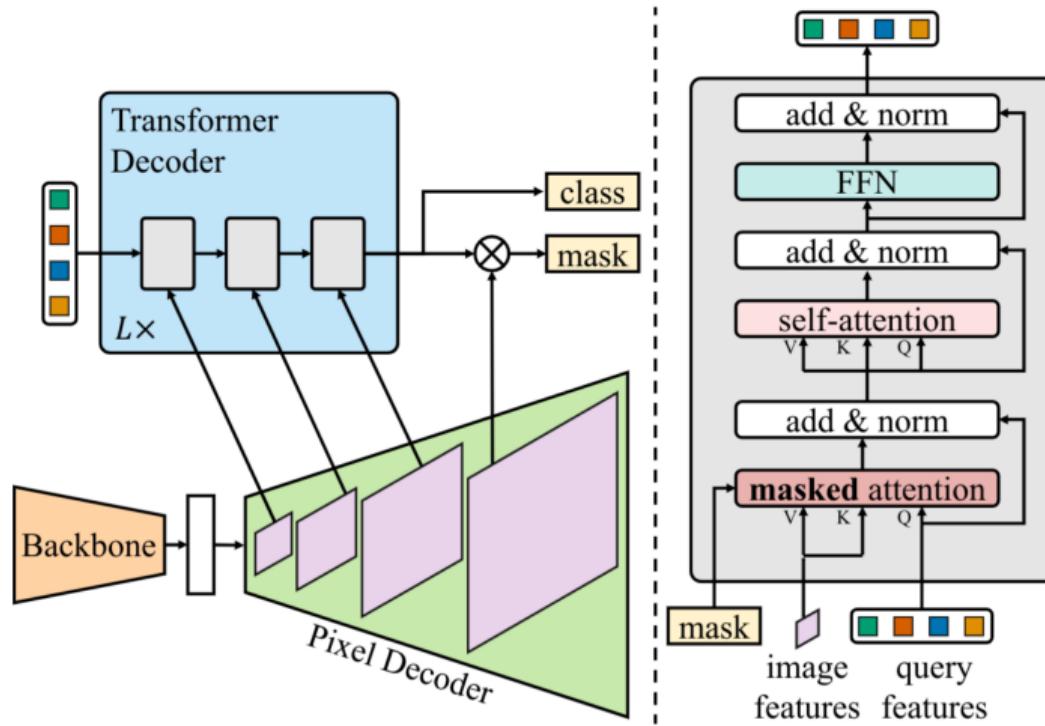


Figure 3: **Semantic segmentation branch.** Each FPN level (left) is upsampled by convolutions and bilinear upsampling until it reaches $1/4$ scale (right), these outputs are then summed and finally transformed into a pixel-wise output.

DETR

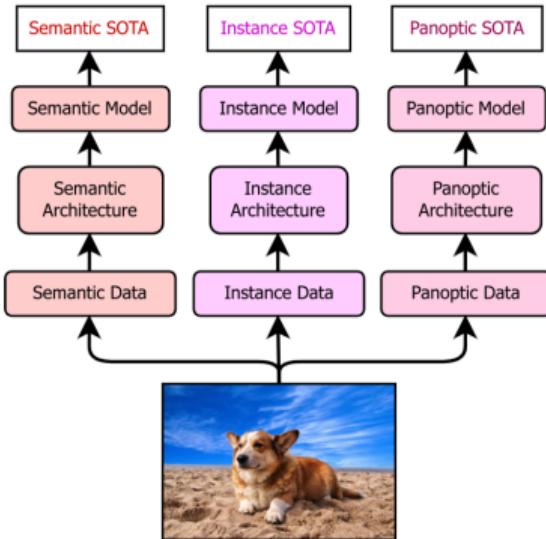


Mask2Former



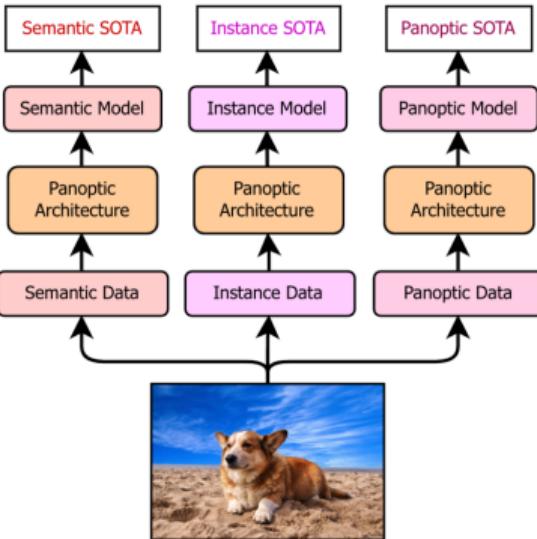
OneFormer

3 architectures, 3 models & 3 datasets



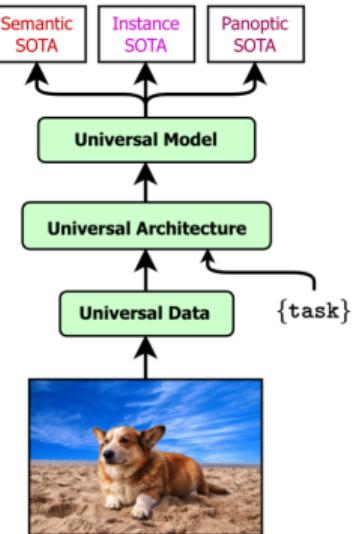
(a) Specialized Architectures, Models & Datasets

1 architecture, 3 models & 3 datasets



(b) Panoptic Architecture BUT Specialized Models & Datasets

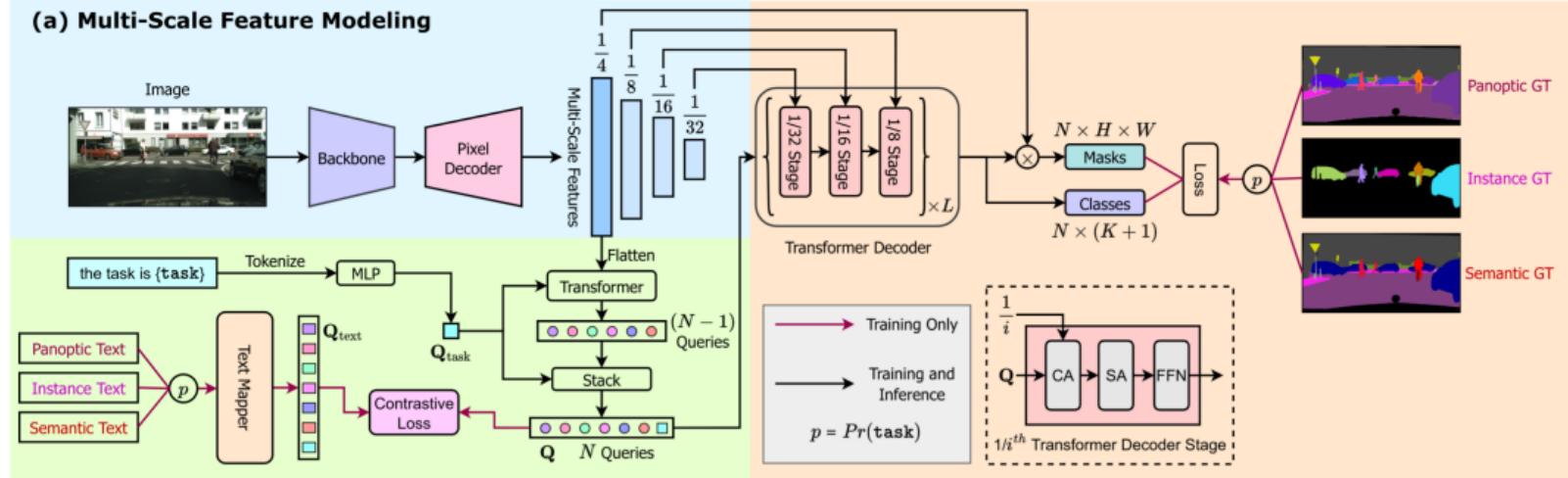
1 architecture, 1 model & 1 dataset



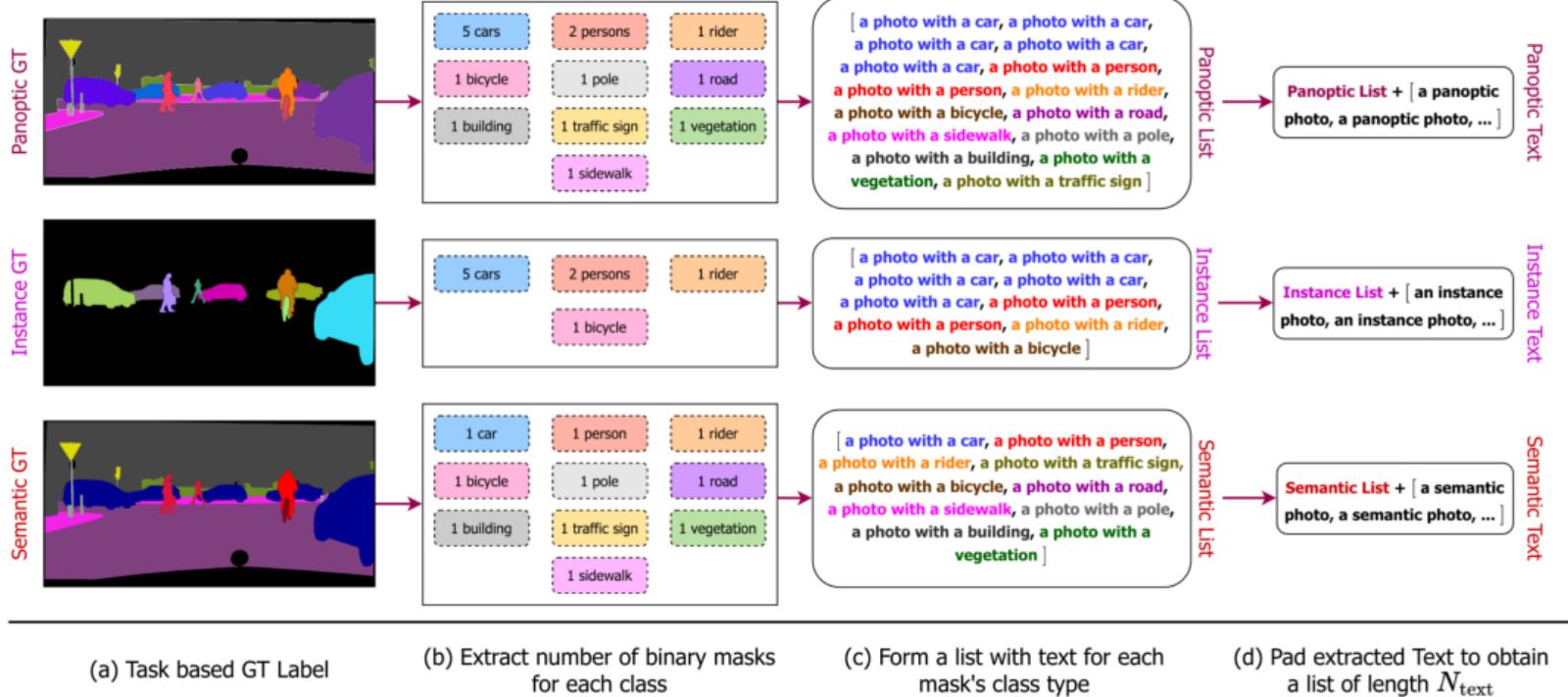
(c) Universal Architecture, Model and Dataset

OneFormer

(a) Multi-Scale Feature Modeling



OneFormer



OneFormer

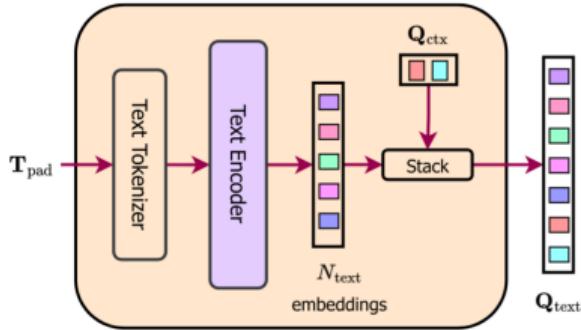


Figure 4. **Text Mapper.** We tokenize and then encode the input text list (T_{pad}) using a 6-layer transformer text encoder [49, 57] to obtain a set of N_{text} embeddings. We concatenate a set of N_{ctx} learnable embeddings to the encoded representations to obtain the final N text queries (Q_{text}). The N text queries stand for a text-based representation of the objects present in an image.

$$\mathcal{L}_{\mathbf{Q} \rightarrow \mathbf{Q}_{\text{text}}} = -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp(q_i^{\text{obj}} \odot q_i^{\text{txt}} / \tau)}{\sum_{j=1}^B \exp(q_i^{\text{obj}} \odot q_j^{\text{txt}} / \tau)},$$

$$\mathcal{L}_{\mathbf{Q}_{\text{text}} \rightarrow \mathbf{Q}} = -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp(q_i^{\text{txt}} \odot q_i^{\text{obj}} / \tau)}{\sum_{j=1}^B \exp(q_i^{\text{txt}} \odot q_j^{\text{obj}} / \tau)}$$

$$\mathcal{L}_{\mathbf{Q} \leftrightarrow \mathbf{Q}_{\text{text}}} = \mathcal{L}_{\mathbf{Q} \rightarrow \mathbf{Q}_{\text{text}}} + \mathcal{L}_{\mathbf{Q}_{\text{text}} \rightarrow \mathbf{Q}}$$

OneFormer

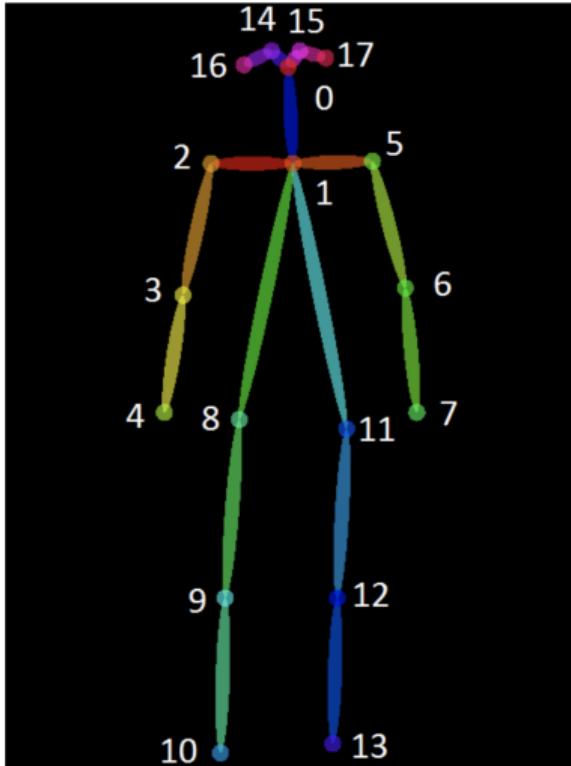
Method	Backbone	#Params	#FLOPs	#Queries	Crop Size	Iters	PQ	AP	mIoU (s.s.)	mIoU (m.s.)
<i>Individual Training</i>										
CMT-DeepLab [‡] [59]	MaX-S [†] [50]	—	—	—	1025×2049	60k	64.6	—	81.4	—
Axial-DeepLab-L [‡] [51]	Axial ResNet-L [†] [51]	45M	687G	—	1025×2049	60k	63.9	35.8	81.0	81.5
Axial-DeepLab-XL [‡] [51]	Axial ResNet-XL [†] [51]	173M	2447G	—	1025×2049	60k	64.4	36.7	80.6	81.1
Panoptic-DeepLab [‡] [11]	SWideRNet [†] [8]	536M	10365G	—	1025×2049	60k	66.4	40.1	82.2	82.9
Mask2Former-Panoptic [12]	Swin-L [†] [38]	216M	514G	200	512×1024	90k	66.6	43.6	82.9	—
Mask2Former-Instance [12]	Swin-L [†] [38]	216M	507G	200	512×1024	90k	—	43.7	—	—
Mask2Former-Semantic [12]	Swin-L [†] [38]	215M	494G	100	512×1024	90k	—	—	83.3	84.3
kMaX-DeepLab [‡] [60]	ConvNeXt-L [†] [39]	232M	1673G	256	1025×2049	60k	68.4	44.0	83.5	—
<i>Joint Training</i>										
OneFormer	Swin-L [†] [38]	219M	543G	250	512×1024	90k	67.2	45.6	83.0	84.4
OneFormer	ConvNeXt-L [†] [39]	220M	497G	250	512×1024	90k	68.5	46.5	83.0	84.0
OneFormer	ConvNeXt-XL [†] [39]	372M	775G	250	512×1024	90k	68.4	46.7	83.6	84.6
OneFormer	DiNAT-L [†] [21]	223M	450G	250	512×1024	90k	67.6	45.6	83.1	84.0

Table 2. SOTA Comparison on Cityscapes val set. [†]: backbones pretrained on ImageNet-22K; [‡]: trained with batch size 32, ^{*}: hidden dimension 1024. OneFormer outperforms the individually trained Mask2Former [12] models. Mask2Former’s performance with 250 queries is not listed, as its performance degrades with 250 queries. We compute FLOPs using the corresponding crop size.

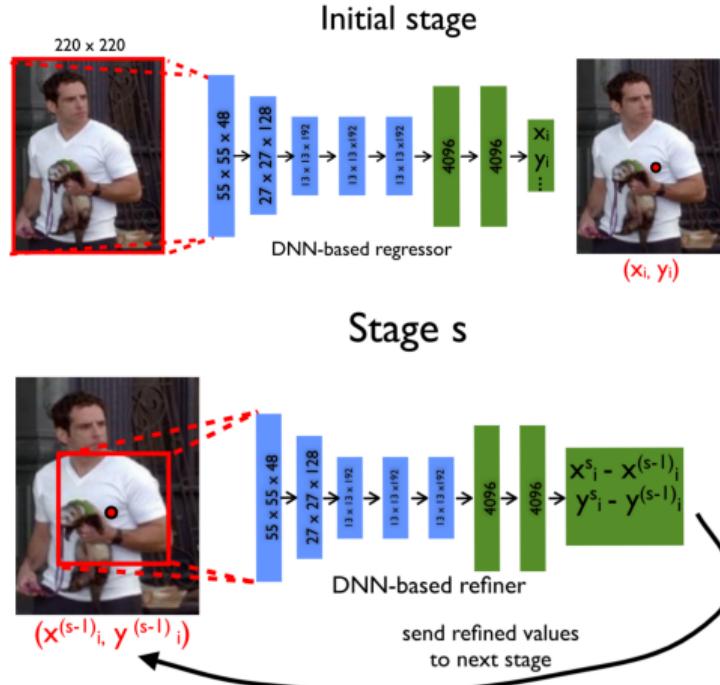
Outline

1. Superpixels
2. Semantic
3. Interactive
4. Instance
5. Panoptic
6. Human pose estimation

Human pose estimation



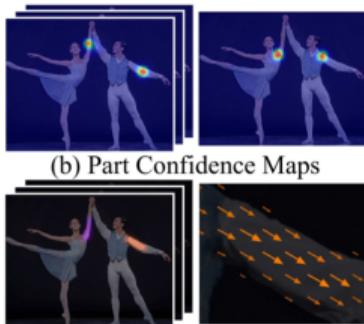
Regressing joint positions



Predicting joint using heatmaps

OpenPose

(a) Input Image



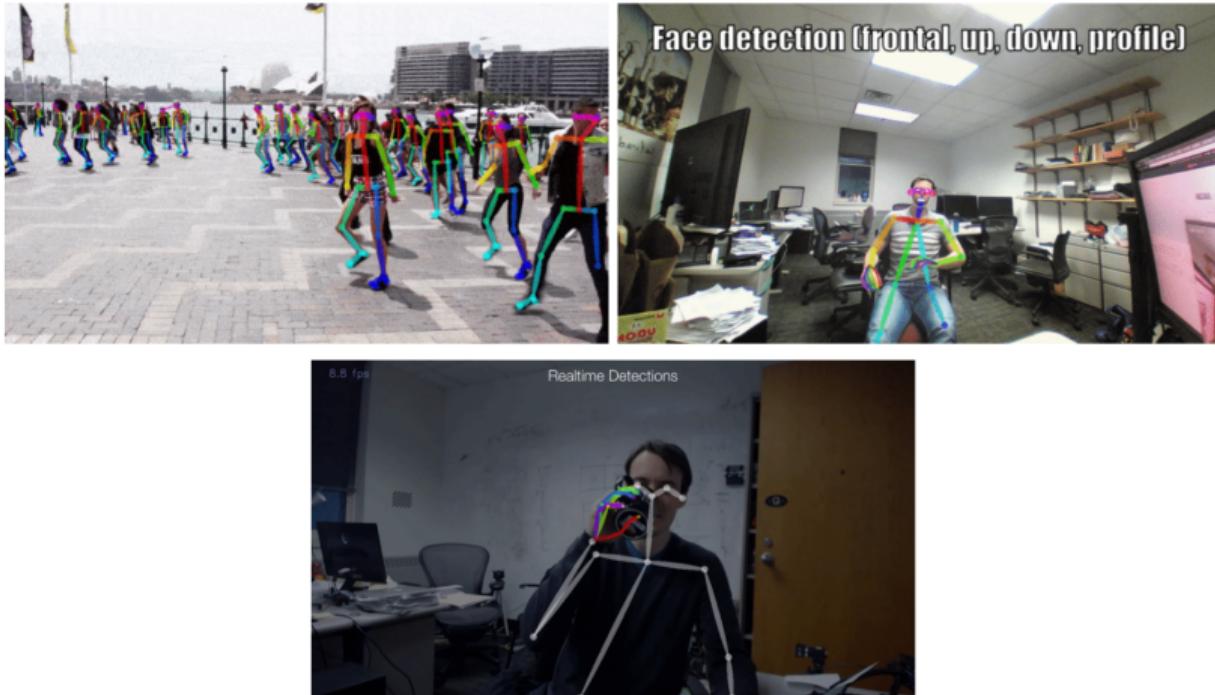
(b) Part Confidence Maps

(c) Part Affinity Fields

(d) Bipartite Matching

(e) Parsing Results

OpenPose



Cao et al. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CVPR 2017

Conclusion

We reviewed following topics:

- superpixel computation with SLIC algorithm
- various methods for semantic segmentation
- several modern methods for click-based interactive segmentation
- instance segmentation using Mask R-CNN
- several modern methods for panoptic segmentation
- human pose estimation via segmentation