

Basic video analysis

Vlad Shakhuro

20 November 2025

Outline

1. Intro

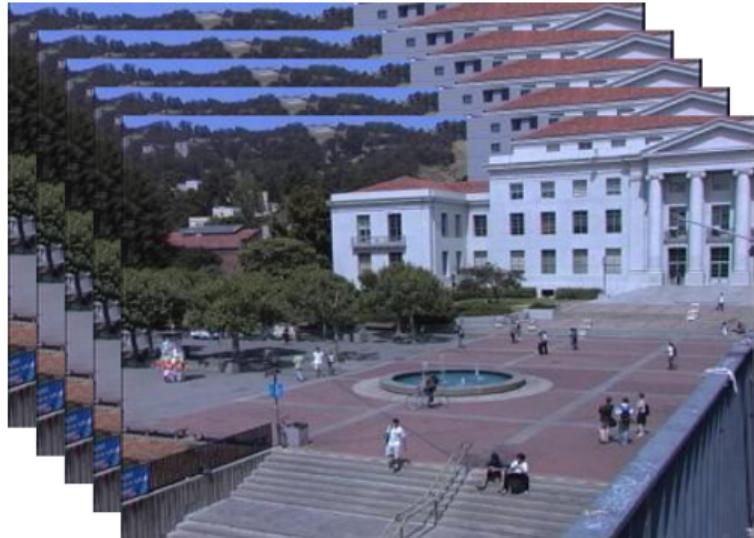
2. Optical flow

3. Action recognition

4. Visual Object Tracking

5. Multiple Object Tracking

Types of video



Video — sequence of frames obtained from single camera in short periods of time

Videostream assumes online processing of frames, may be unbounded in time

Videosequence assumes offline processing, all frames are available

Raw data flow is greater than 1 Gb ethernet capacity:
2MB (FullHD resolution) \times 3 (RGB) \times 30 (fps) = 180 MB/s

Shooting scenarios

Camera view and appearance of objects may be very different. Production models are created for specific shooting scenarios

Outline

1. Intro

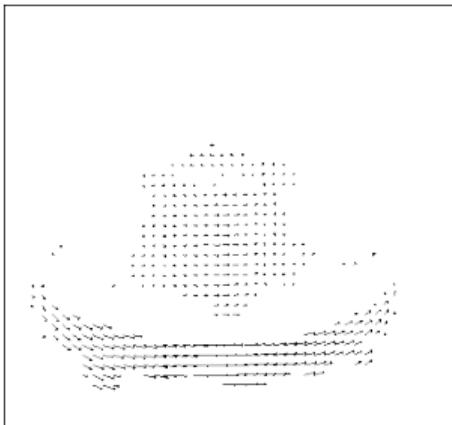
2. Optical flow

3. Action recognition

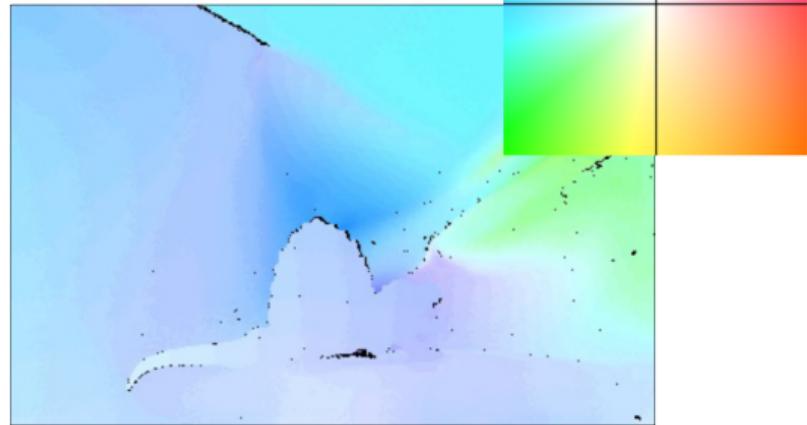
4. Visual Object Tracking

5. Multiple Object Tracking

Optical flow



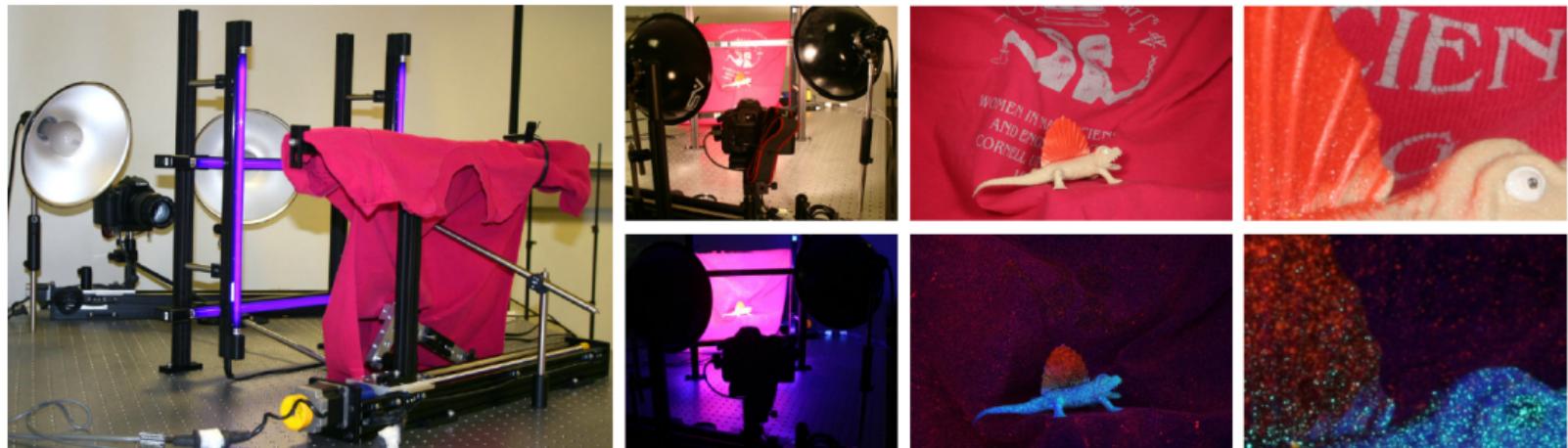
motion vectors for some points



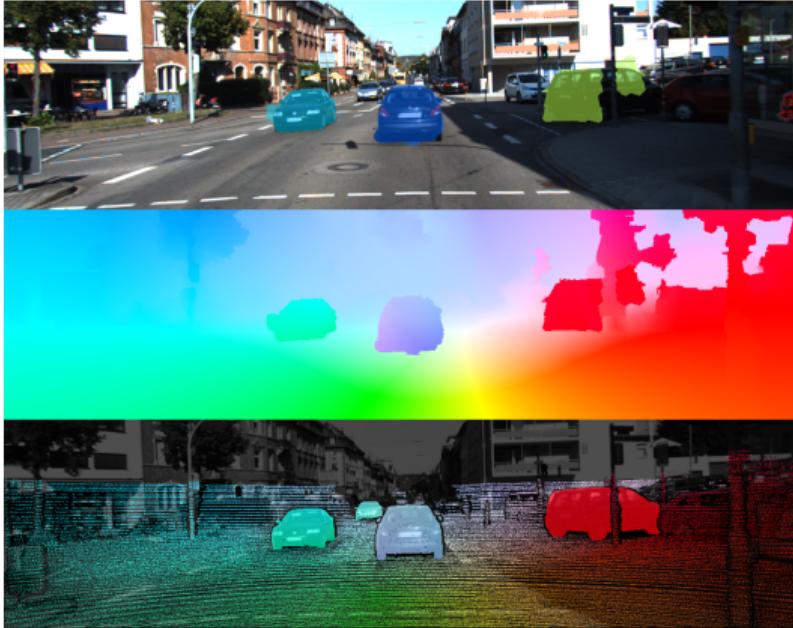
color coding of motion vectors

Optical flow — vector field of visible movement of pixels between frames

Middlebury dataset



KITTI

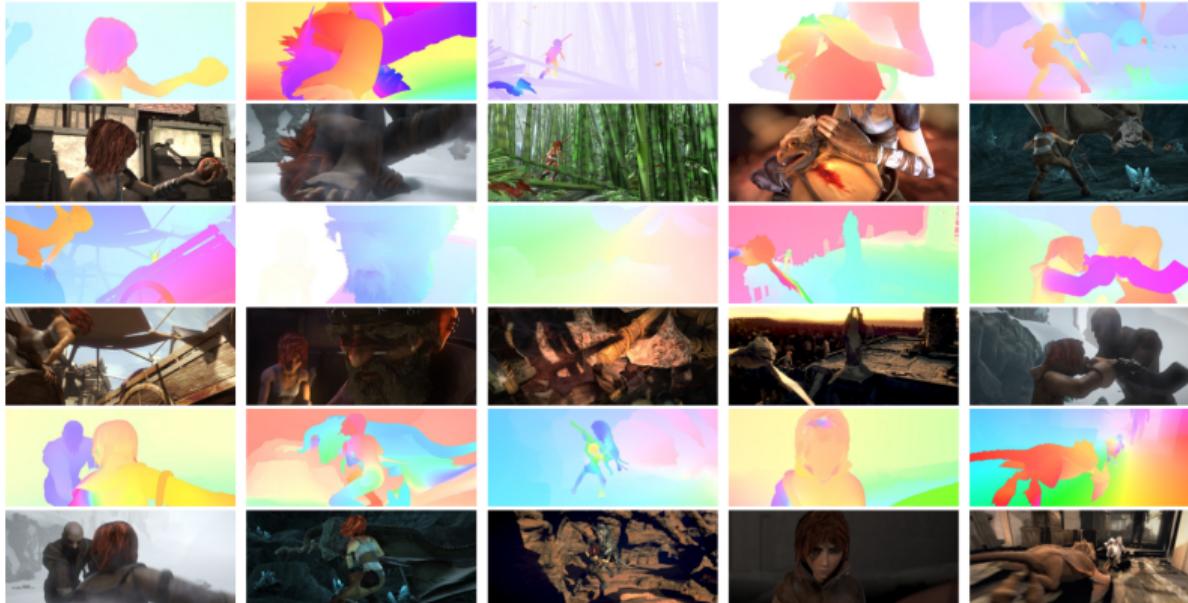


200 training and 200 testing frames

Optical flow was estimated:

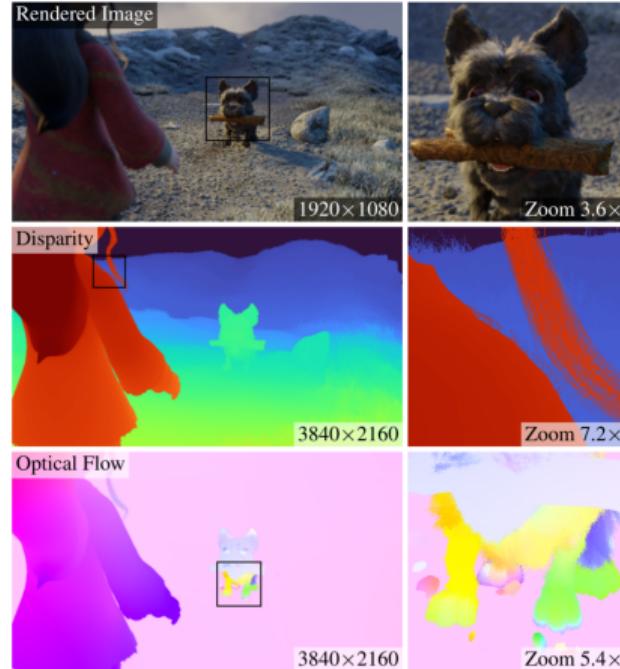
- via 3D reconstruction for background
- by fitting CAD models for moving objects (cars)

Sintel



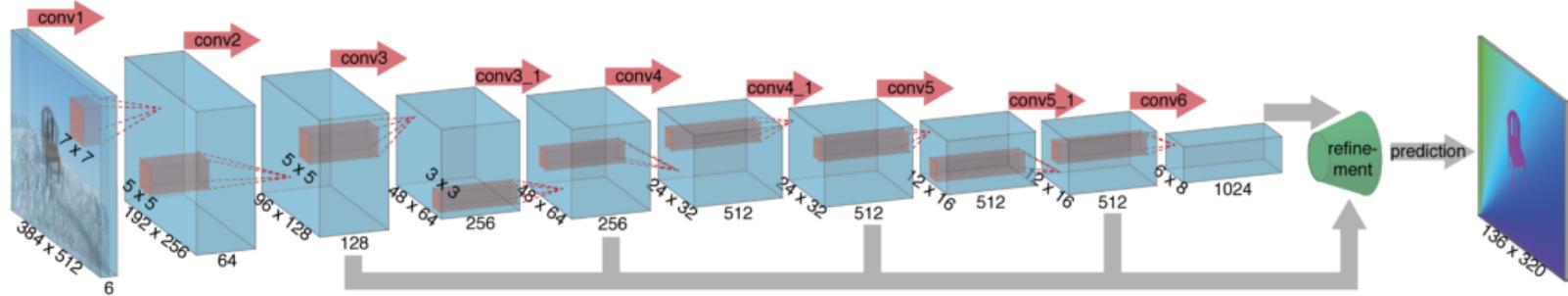
1064 training and 564 testing frames, 1024×436 resolution

Spring



6000 FullHD images with 4K ground truth

FlowNet



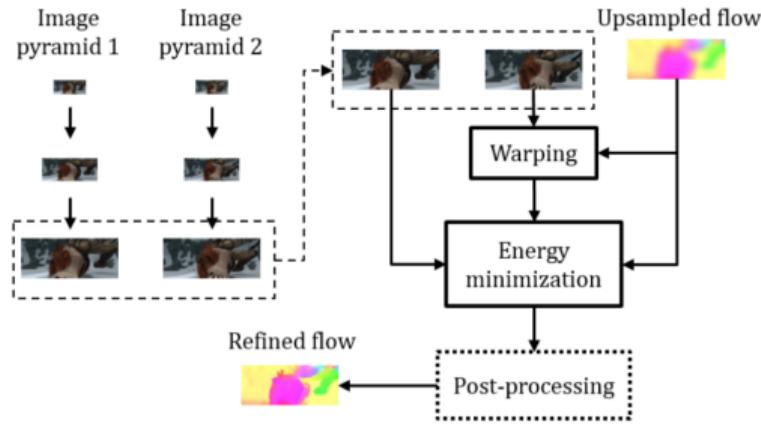
Concatenate a pair of images and pass it to dense prediction network

FlowNet

	Frame pairs	Frames with ground truth	Ground truth density per frame
Middlebury	72	8	100%
KITTI	194	194	~50%
Sintel	1,041	1,041	100%
Flying Chairs	22,872	22,872	100%

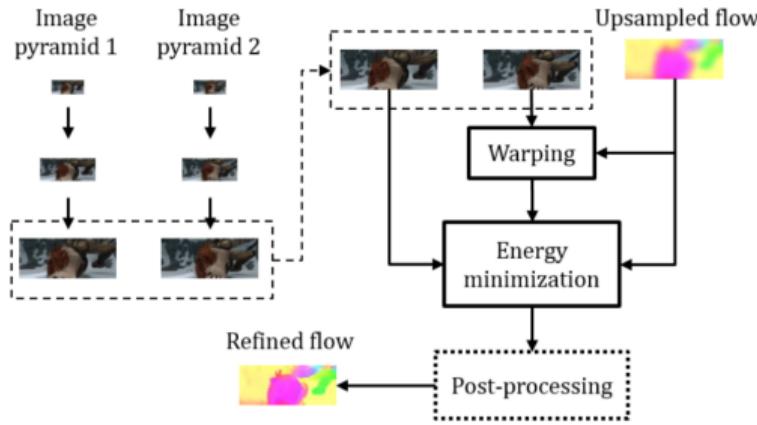
Use synthetic dataset Flying chairs for pretraining

PWC-Net

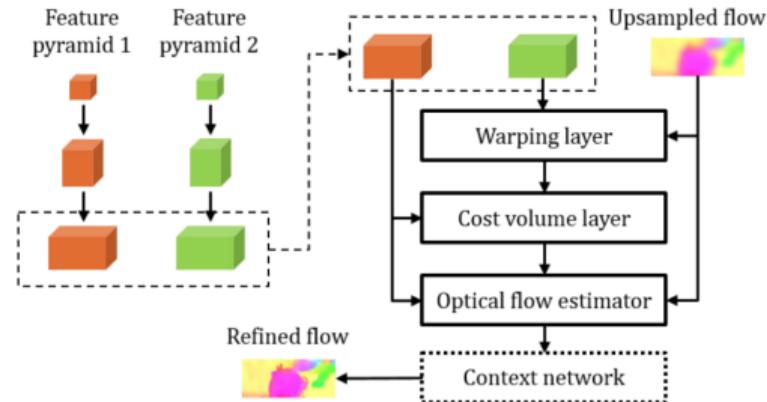


classical approach

PWC-Net



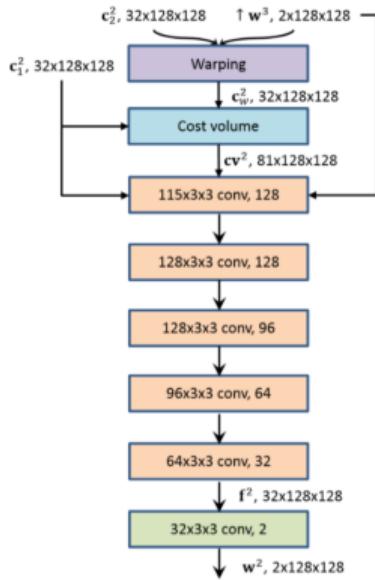
classical approach



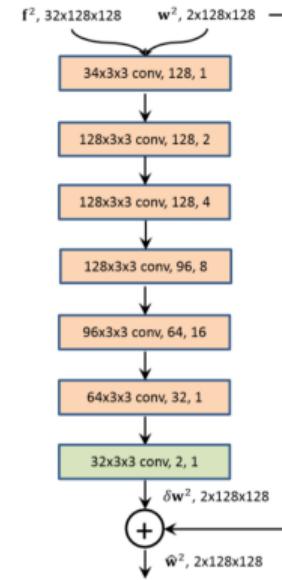
PWC-Net

Compute Cost Volume (CV) via correlation for pixels within distance d .
Size of CV tensor will be $d^2 \times H \times W$

PWC-Net



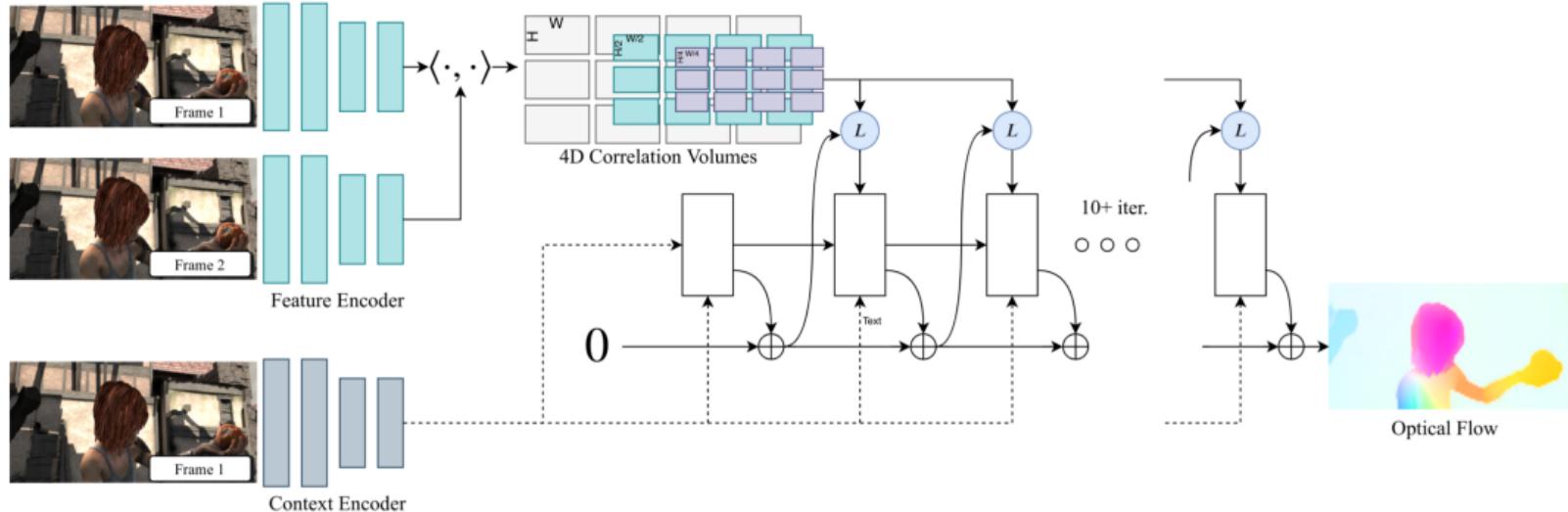
OF estimator



context network

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. CVPR 2018

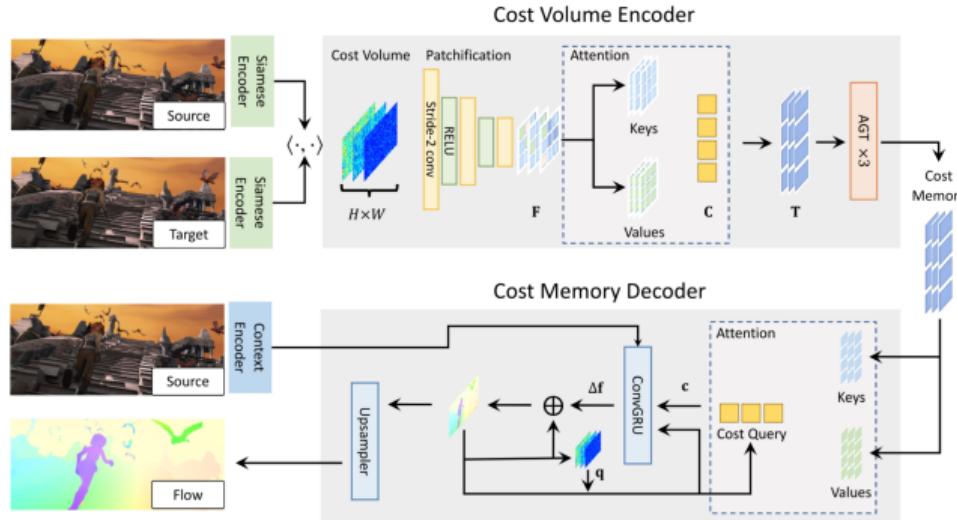
RAFT



Key ideas:

- maintain high-res estimation of optical flow without pyramid
- use recurrent unit for refinement of optical flow

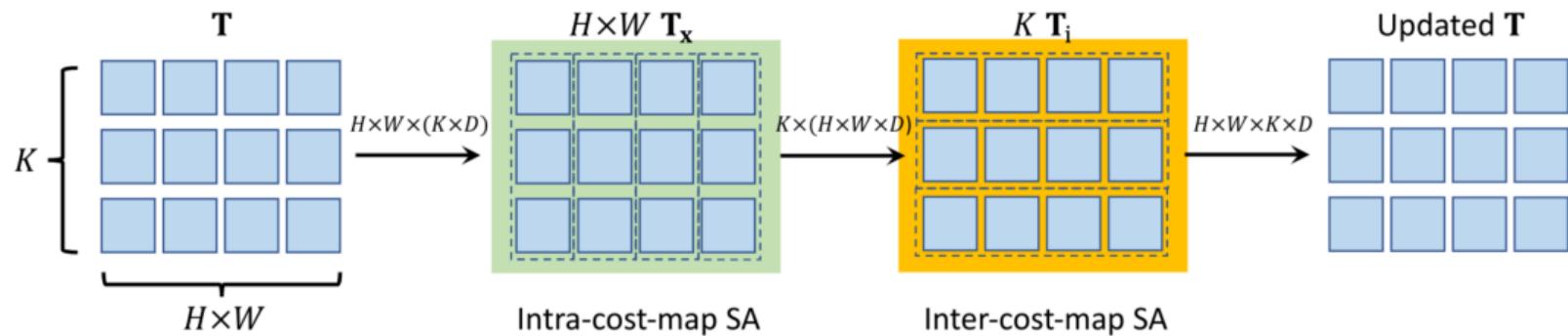
FlowFormer



Key ideas:

- compress cost volume to tokens ($H^2 \times W^2 \rightarrow H \times W \times K \times D$)
- two-step attention: for tokens withing same cost map and across different cost maps
- decoder with cost queries

FlowFormer



Outline

1. Intro
2. Optical flow
3. Action recognition
4. Visual Object Tracking
5. Multiple Object Tracking

Action recognition

Human actions are the main content of movies, TV news and shows, home video and video surveillance. Applications of action recognition:

- surveillance, abnormal situation detection
- video archive indexing and retrieval
- content navigation (automatical video timestamps)

Actions

walking

jogging

running

boxing

waving

clapping

Actions

Short meaningful movements

answer phone

handshake

Actions → Events

A set of small actions with a specific common goal can still be called an “action” but we can also call them “events”

make sandwich

doing homework

Events

An event can include a lot of different actions of different people

birthday party

parade

UCF101

- 13320 videos from YouTube in 101 classes
- 5 groups: Human-Object Interaction; Body-Motion Only; Human-Human Interaction; Playing Musical Instruments; Sports
- quality is saturated (99% accuracy for SOTA methods)

Kinetics

riding a bike

playing violin

braiding hair

dribbling basketball

riding unicycle

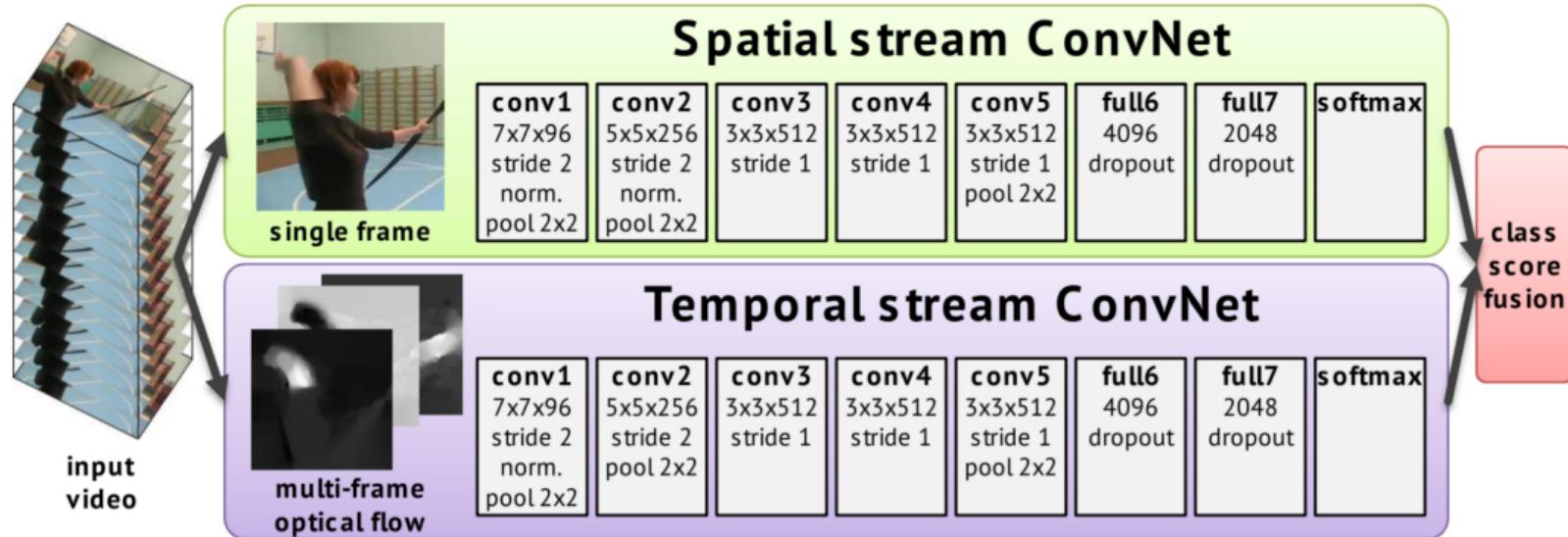
playing trumpet

brushing hair

dunking basketball

- large video dataset scraped from YouTube
- 400, 600, 700 classes
- 300k, 650k, 700k videos
- 85% accuracy for SOTA methods

Two-stream ConvNet



Outline

1. Intro
2. Optical flow
3. Action recognition
4. Visual Object Tracking
5. Multiple Object Tracking

Visual Object Tracking

Single arbitrary object localized on the first frame

Object should be tracked on short time interval in online mode

VOT model requirements

- model works in real time
- object appearance may change significantly
- similar and occluded objects make task more complex

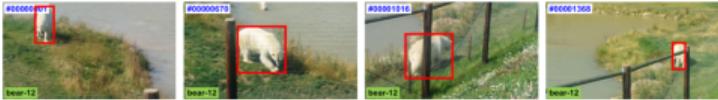
VOT Challenge

Small number (~50) of various videos

Most challenging:

Least challenging:

LaSOT



Bear-12: "white bear walking on grass around the river bank"

Bus-19: "red bus running on the highway"



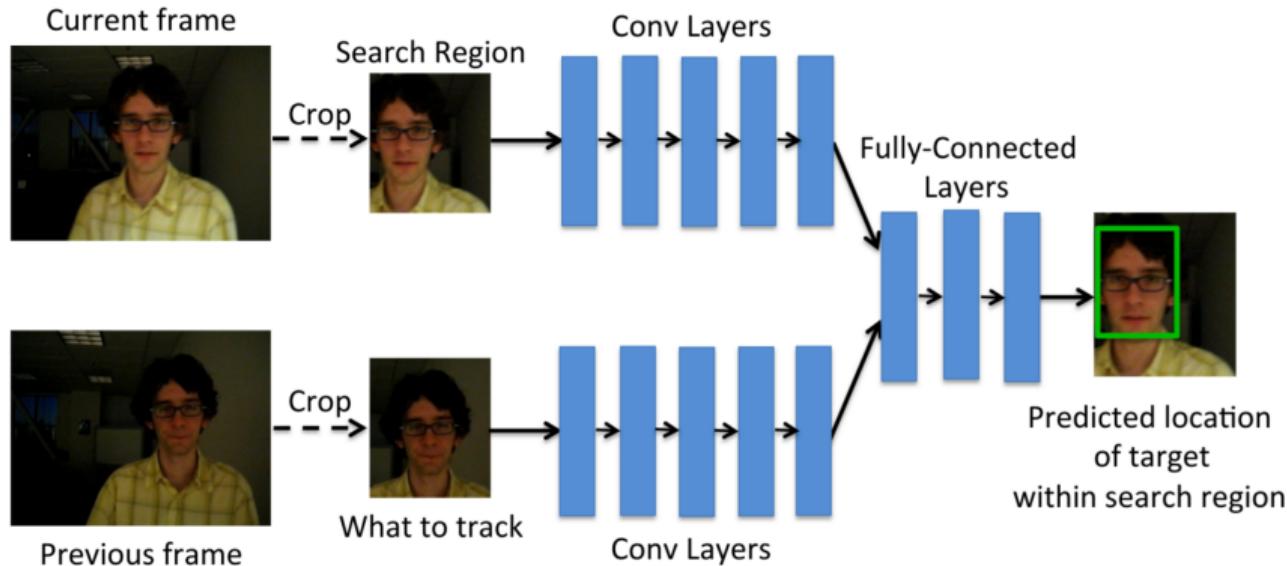
Horse-1: "brown horse running on the ground"

Person-14: "boy in black suit dancing in front of people"

Mouse-6: "white mouse moving on the ground around another white mouse"

- 1400 videos (YouTube CC license)
- 84s duration on average
- 3.5M frames in total
- 70 classes chosen for popular applications
- labelled by 10 volunteers and PhD students

GOTURN



Training GOTURN

Previous frame centered on object

Generate next synthetic frame from current using random crops and resizes

STARK

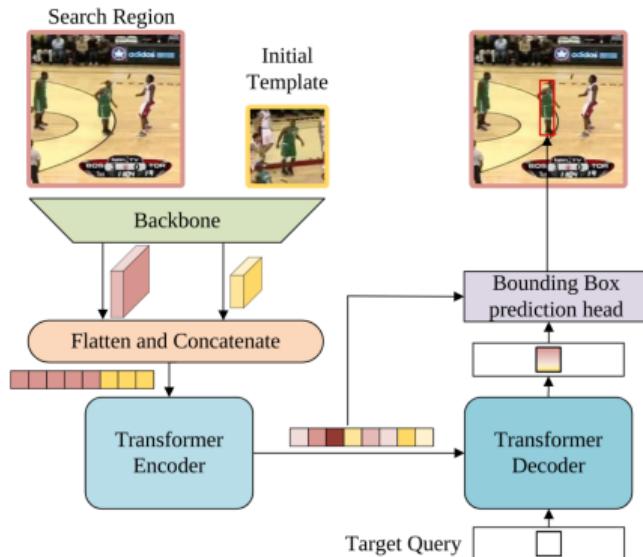


Figure 2: Framework for spatial-only tracking.

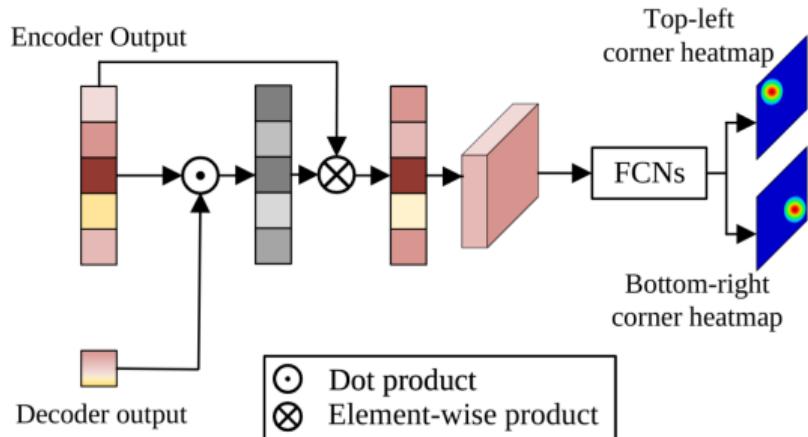
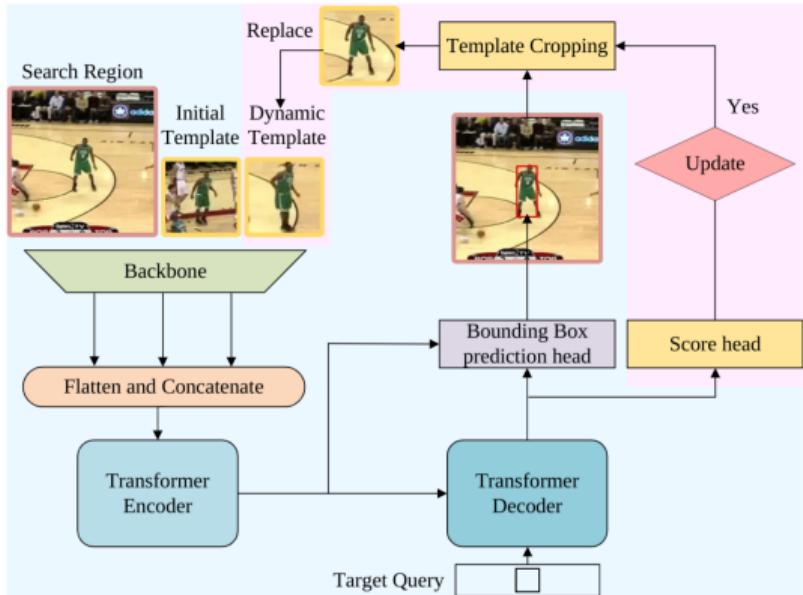


Figure 3: Architecture of the box prediction head.

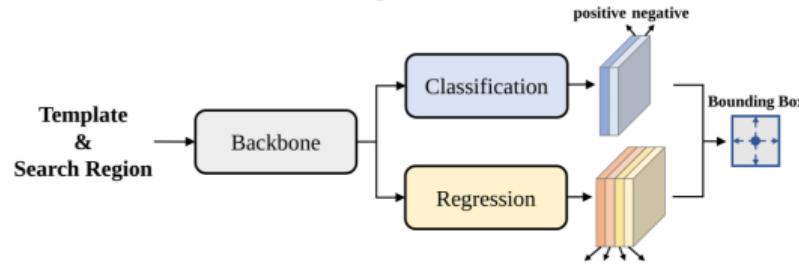
STARK



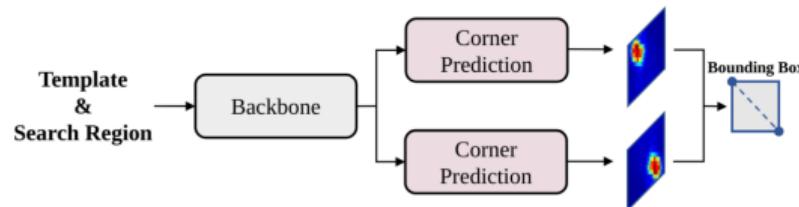
Two stage-training: first localization, then classification

Figure 4: Framework for spatio-temporal tracking. The differences with the spatial-only architecture are highlighted in pink.

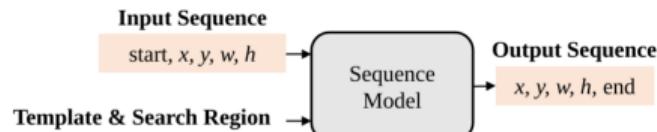
SeqTrack



(a) Trackers with classification and regression heads

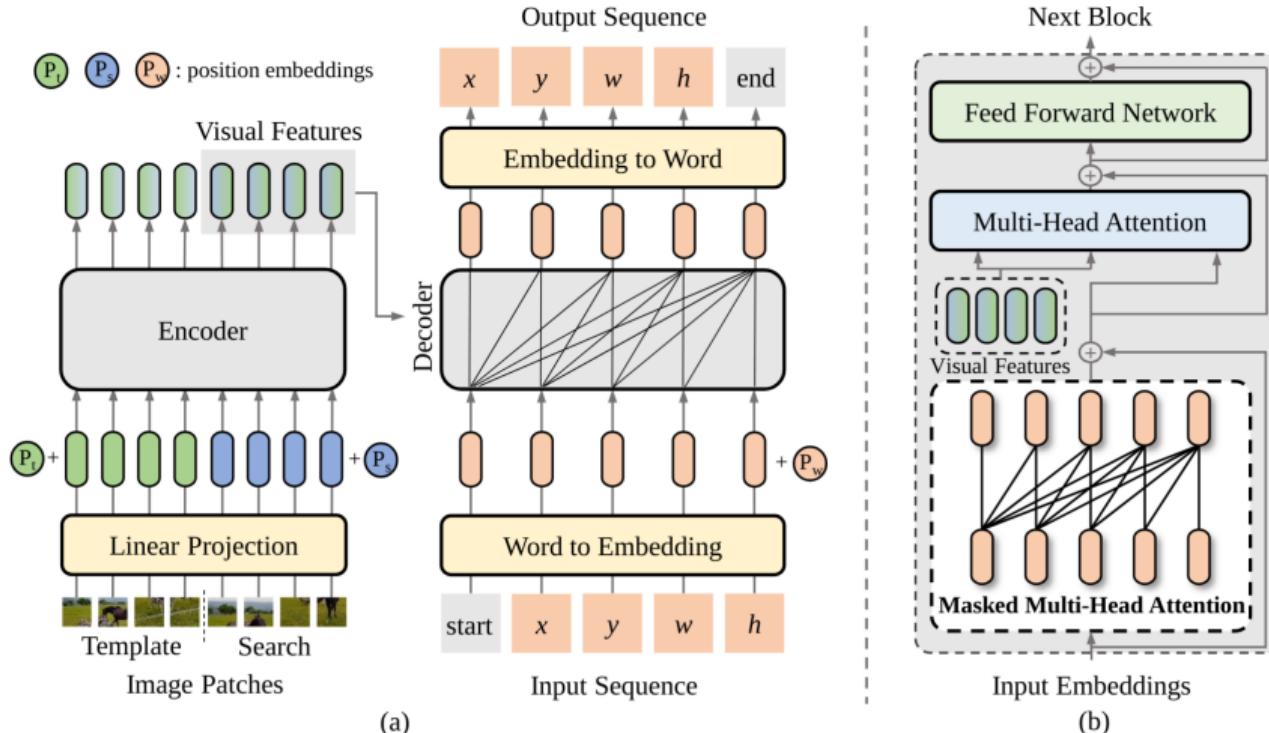


(b) Trackers with corner heads



(c) Our sequence-to-sequence tracker (SeqTrack)

SeqTrack



Outline

1. Intro
2. Optical flow
3. Action recognition
4. Visual Object Tracking
5. Multiple Object Tracking

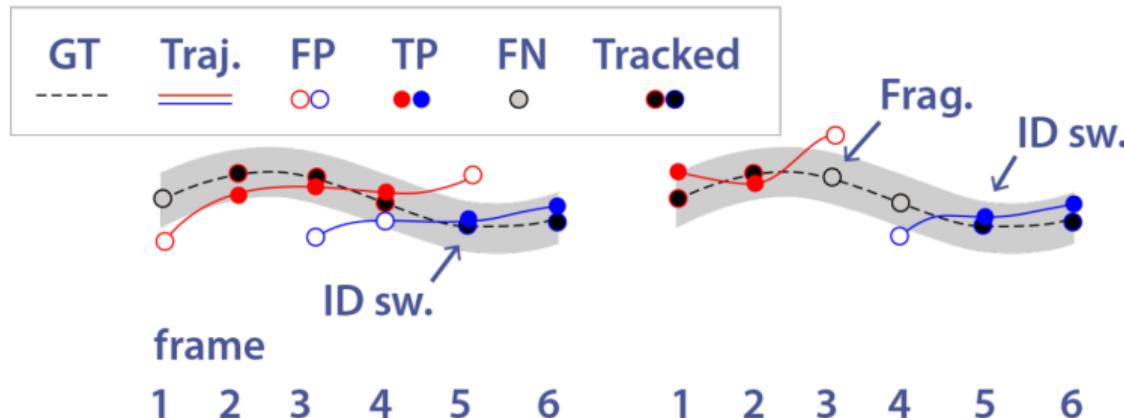
Multiple Object Tracking

Track multiple objects on a long period of time. Variants:

- Detection Based Tracking
- Detection Free Tracking

Output a set of trajectories for all visible objects in video. Object location is usually described with bounding box

MOT errors



- ID switches — two or more trajectories are predicted for single trajectory
- Fragmentations — two trajectories are predicted for a single trajectory with gaps

MOT metrics

Multiple Object Tracking Accuracy:

$$MOTA = 1 - \frac{\sum_t (FN_t + FP_t + IDSW_t)}{\sum_t GT_t}$$

Multiple Object Tracking Precision
(object localization accuracy, average overlap):

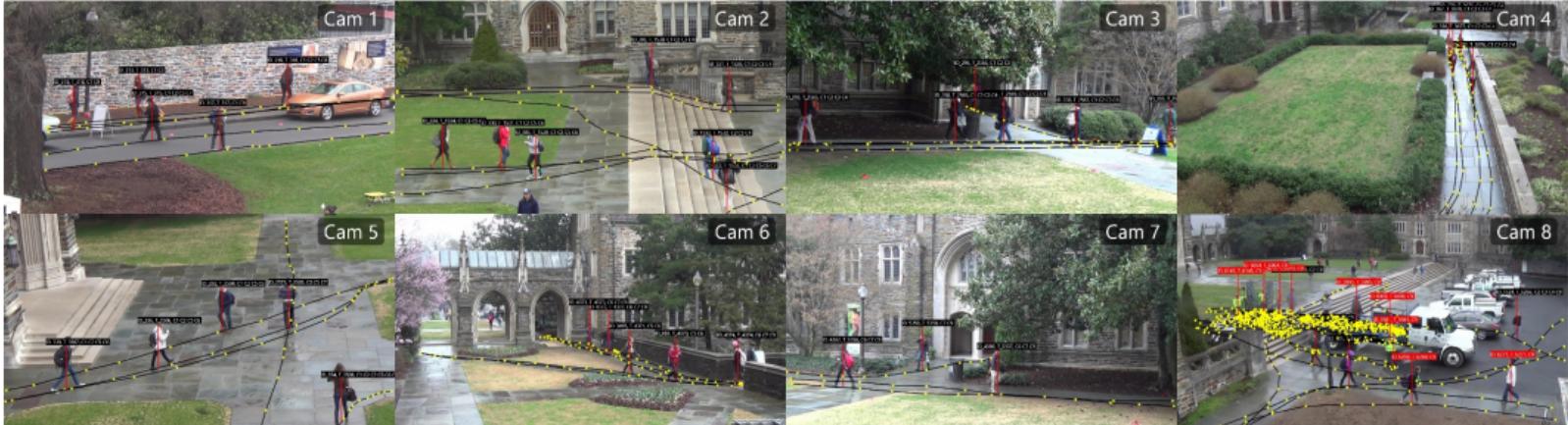
$$MOTP = \frac{\sum_{t,i} d_{t,i}}{c_t}$$

Mostly Tracked (MT), Mostly Lost (ML), Partially Tracked (PT):
#objects tracked for $> 80\%$, $< 20\%$ of the trajectory and in between
these thresholds

MOT20 Challenge

- 4 train and 4 test videos with challenging crowded scenes
- 14k frames, 9 minutes
- 1.5M and 0.7M bboxes for training and testing pedestrian detector

Duke MTMC

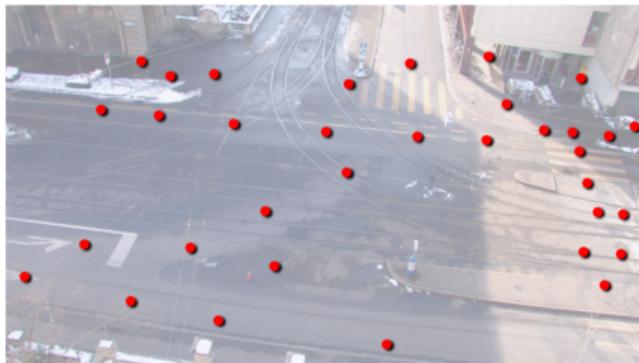


- 8 static cameras \times 85 minutes of 1080p 60 fps video
- $>2M$ manually annotated frames
- $>2k$ identities
- manual annotation by 5 people over 1 year
- more identities than all existing MTMC datasets combined
- unconstrained paths, diverse appearance

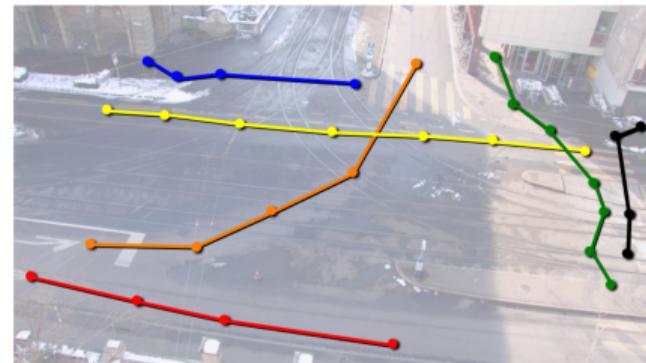
UA-DETRAC

- 10 hours of videos, 25 fps, resolution 960×540 pixels
- 24 different locations at Beijing and Tianjin in China
- $> 140k$ frames
- 8250 vehicles
- 1.2M labeled boxes

Tracking by detection



object detections

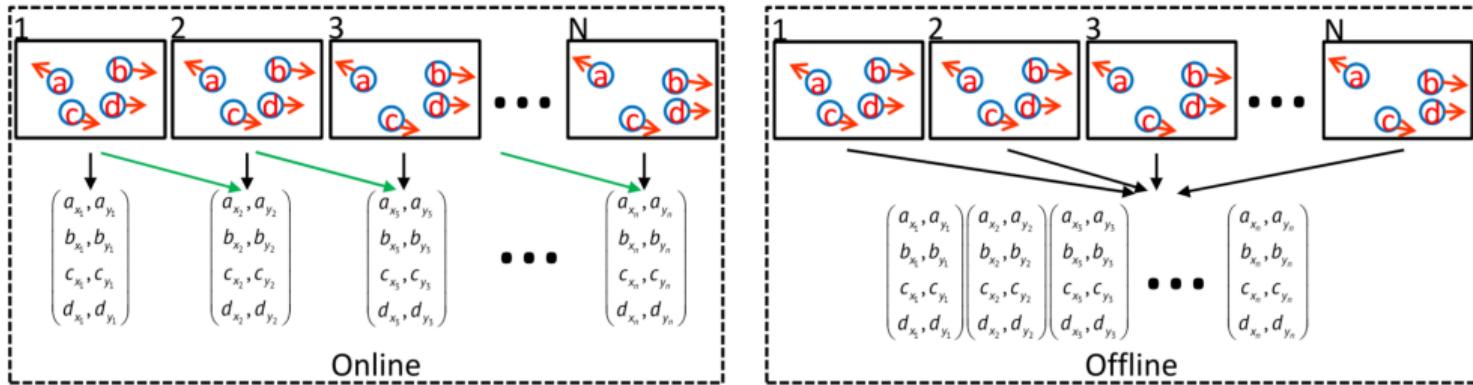


association of detections

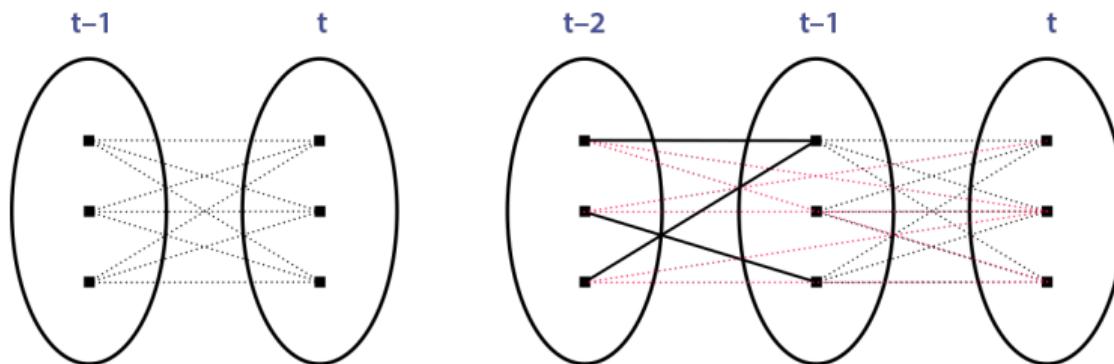
MOT and detection errors

Trackers usually reduce FP and raise FN. Therefore, good detector is a key for a good MOT method

Online vs offline tracking

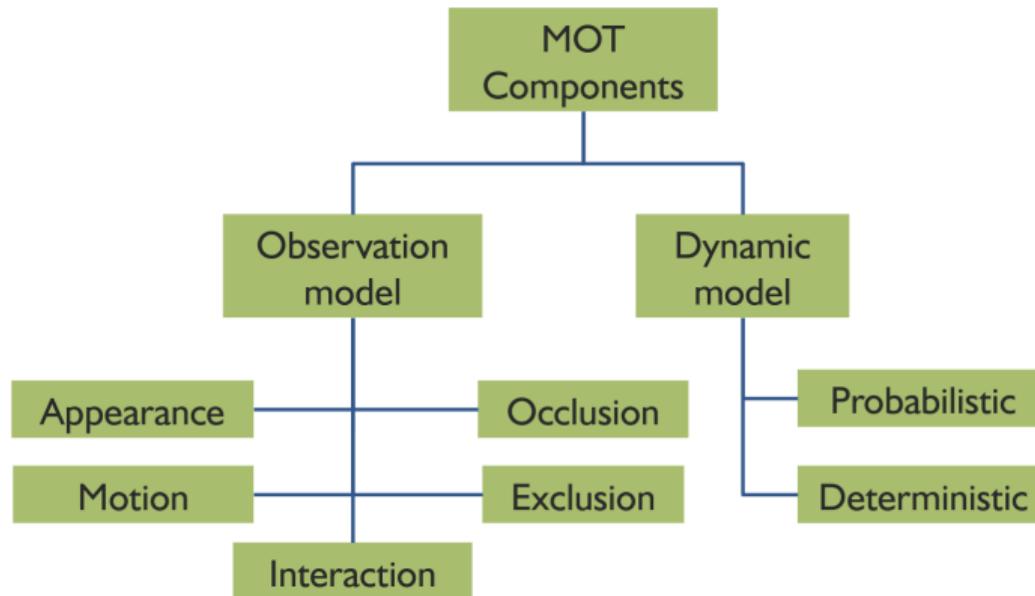


Data association

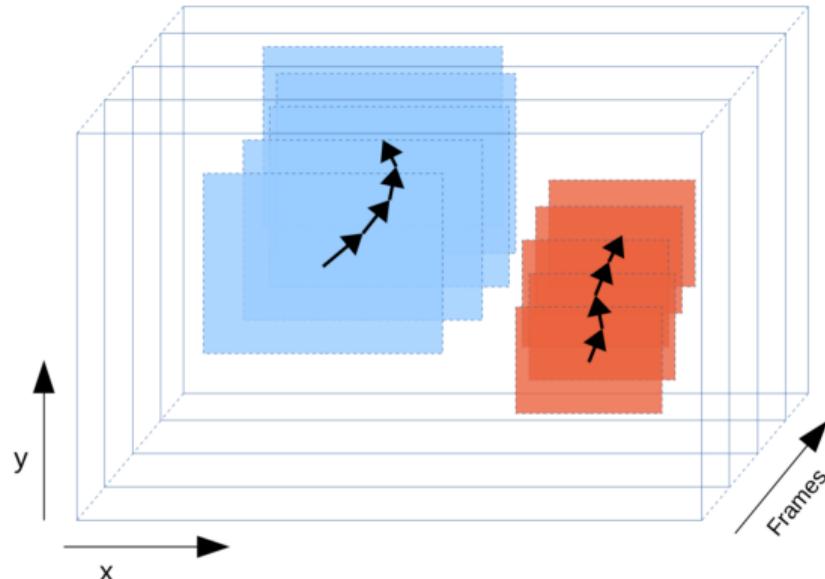


two-frame vs multi-frame methods

Affinity function

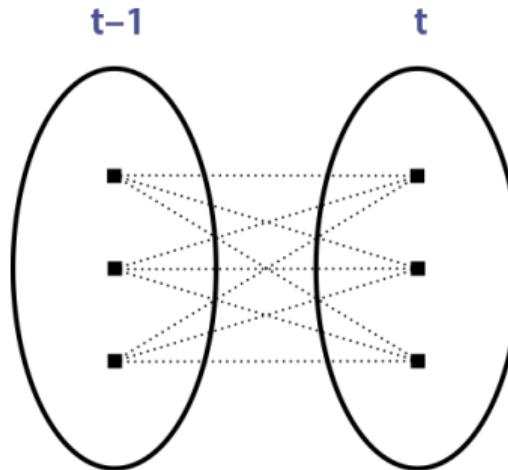


Association with IoU



Simple Online and Realtime Tracking (SORT)

- CNN-based object detector
- Kalman filter for predicting object position in current frame based on positions in previous frames
- Hungarian algorithm for matching object detections in current frames with predicted positions
- IoU of detected and predicted bounding boxes as affinity measure for matching detection and track



SORT and IoU tracker comparison

	MOTA	MOTP	MT	ML	FP	FN	ID sw	Frag	Hz
SORT	59.8	79.6	25.4%	22.7%	8698	63245	1423	1835	59.5
IOU	57.1	77.1	23.6%	32.9%	5702	70278	2167	3028	3004

Re-identification

Detections in video

Probe

Gallery

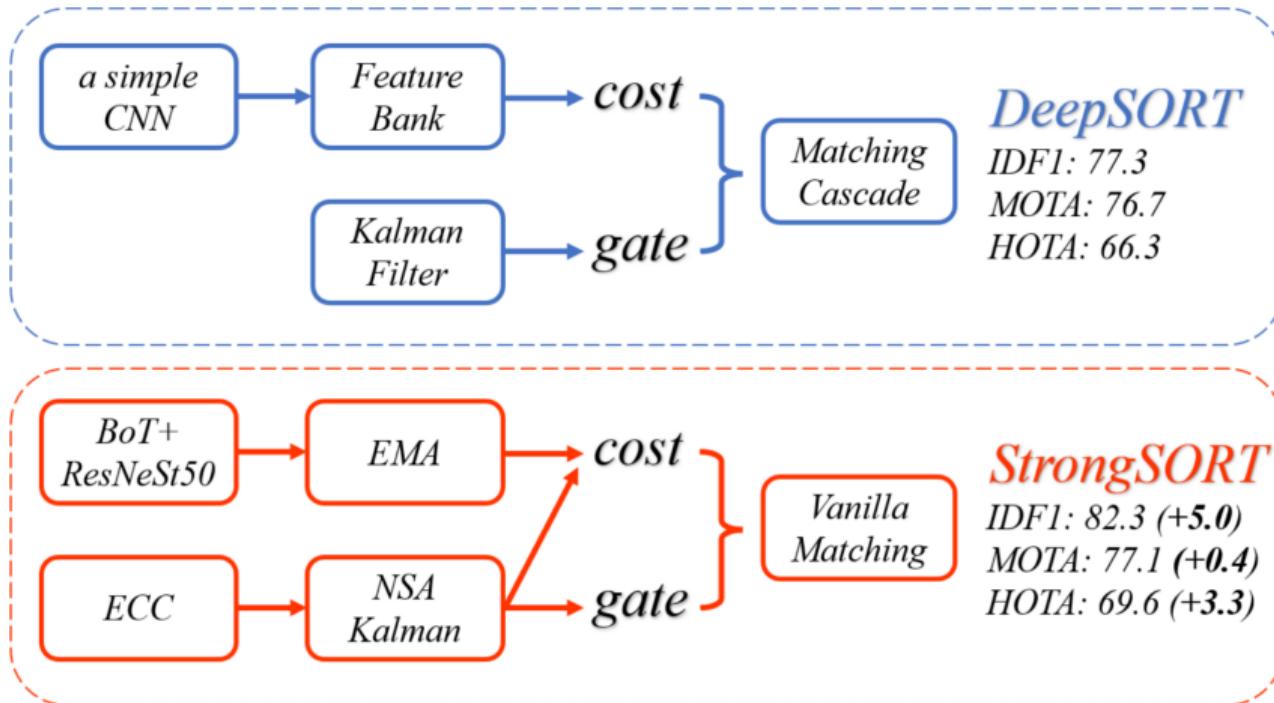
Matches

DeepSORT and SORT comparison

	MOTA	MOTP	MT	ML	FP	FN	ID sw	Frag	Hz
SORT	59.8	79.6	25.4%	22.7%	8698	63245	1423	1835	59.5
Deep SORT	61.4	79.1	32.8%	18.2%	12852	56668	781	2008	40

Addition of re-identification to affinity function

StrongSORT



StrongSORT++

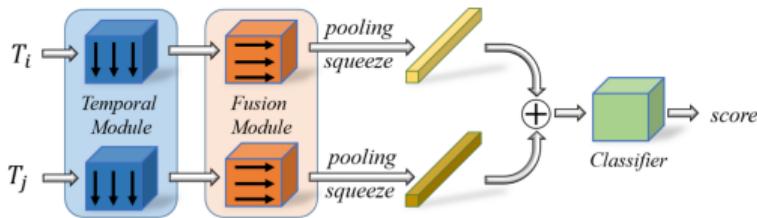


Fig. 3: Framework of the two-branch AFLink model. It adopts two tracklets T_i and T_j as input, where $T_i = \{f_k^*, x_k^*, y_k^*\}_{k=k^*}^{k^*+N-1}$ consists of the frame id f_k^* and positions (x_k^*, y_k^*) of the recent $N = 30$ frames. Then, the temporal module extracts features along the temporal dimension with 7×1 convolutions and the fusion module integrates information along the feature dimension with 1×3 convolutions. These two tracklet features are pooled, squeezed and concatenated, and then input into a classifier to predict the association score.

appearance-free linking
of distant tracklets

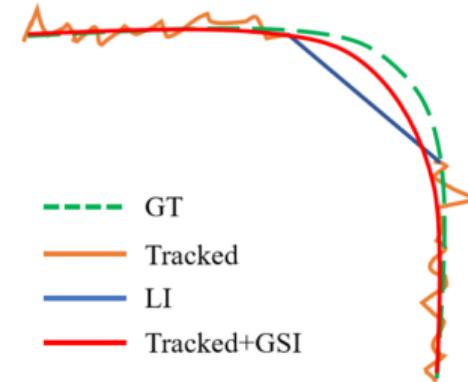


Fig. 4: Illustration of the difference between linear interpolation (LI) and the proposed Gaussian-smoothed interpolation (GSI).

interpolation of trajectories
with splines

Conclusion

We reviewed following topics:

- optical flow computation — an important low-level task for further video analysis
- action recognition — classification task for videos
- visual tracking — general tracking method for a single object in video
- multiple object tracking that is used mostly for surveillance tasks