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Reconstructing images from neural features
Initialize 𝑥 with white noise
Optimize 𝑥 using following loss:

𝑥∗ = argmin
𝑥∈ℝ𝐻×𝑊×𝐶

‖Φ(𝑥) − Φ0‖
2 + 𝜆𝑅(𝑥)

𝑅(𝑥) = ∑
𝑖,𝑗
(𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)

2 + (𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)
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Mahendran, Vedaldi. Understanding Deep Image Representations by Inverting Them. CVPR 2015 3



LPIPS: comparing two images

Zhang et al. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CVPR 2018
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Human comparison
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Inception score (IS)
For generated image 𝑥:
• 𝑝(𝑦|𝑥) should have low entropy

(generated image is somehow confidently classified)
• ∫𝑝(𝑦|𝑥 = 𝐺(𝑧))𝑑𝑧 should have high entropy

(generated images are varied)
Inception score:

IS(𝑋𝑠) = 𝔼
𝑥∈𝑋𝑠

𝐾𝐿 (𝑝(𝑦|𝑥) ‖ 𝑝(𝑦))

Label prediction 𝑝(𝑦|𝑥) is computed using Inception model

Drawback: real images aren’t used for computing metric

Salimans et al. Improved Techniques for Training GANs. NIPS 2016
6



Fréchet Inception Distance (FID)
Assume that image features computed with Inception model have normal
distribution. Compute Fréchet (also called Wasserstein-2) distance
between two gaussians:

FID(𝑋𝑟, 𝑋𝑠) = ‖𝜇𝑋𝑟
− 𝜇𝑋𝑠

‖
2
− Tr(Σ𝑋𝑟

+ Σ𝑋𝑠
− 2√Σ𝑋𝑟

Σ𝑋𝑠
)

Drawbacks:
1. Inception embeddings aren’t normally

distributed
2. Estimating (2048 × 2048)-dimensional

covariance matrices from a small sample
can lead to large errors

3. Has a bias that depends on the 𝑋𝑠 model
Heusel et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NIPS 2017
Chong, Forsyth. Effectively Unbiased FID and Inception Score and where to find them. CVPR 2020
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CLIP and Maximum Mean Discrepancy (CMMD)
Use CLIP embeddings (more diverse than Inception embs) and MMD
distance:

CMMD(𝑋𝑟, 𝑋𝑠) = 𝔼
𝑥𝑟,𝑥

′
𝑟
𝑘(𝑥𝑟, 𝑥

′
𝑟) + 𝔼

𝑥𝑠,𝑥
′
𝑠
𝑘(𝑥𝑠, 𝑥

′
𝑠) − 2 𝔼

𝑥𝑟,𝑥𝑠
𝑘(𝑥𝑟, 𝑥𝑠)

Jayasumana et al. Rethinking FID: Towards a Better Evaluation Metric for Image Generation. CVPR 2024 8
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Style transfer
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Generating stylized images from noise

Gatys et al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016
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Deep Feature Interpolation

Upchurch et al. Deep Feature Interpolation for Image Content Changes. CVPR 2017
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Deep Feature Interpolation results
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Training a neural network for a single style

Johnson et al. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. ECCV 2016
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Instance Normalization

Ulyanov et al. Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and
Texture Synthesis. ICCV 2017 15



Adaptive Instance Normalization

𝐴𝑑𝑎𝐼𝑁(𝑥, 𝑦) = 𝜎(𝑦)(
𝑥 − 𝜇(𝑥)
𝜎(𝑥)

) + 𝜇(𝑦)

Huang, Belongie. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017
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Datasets: FFHQ

70k images of people with permissive license
1024×1024 resolution

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019 18



Datasets: LandscapeHQ

90k images of landscapes from Unsplash and Flickr with high resolution

Skorokhodov et al. Aligning Latent and Image Spaces to Connect the Unconnectable. ICCV 2021
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GAN

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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GAN results
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DCGAN

Radford, Metz. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. ICLR 2016
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Wasserstein loss function

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017 23



Wasserstein GAN training procedure
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Progressive GAN

Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018
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Progressive GAN
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StyleGAN

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019 27



Style mixing in StyleGAN
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Superresolution
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Inpainting
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Domain adaptation
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cGAN

Mirza, Osindero. Conditional Generative Adversarial Nets. arXiv:1411.1784
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pix2pix

Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017
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pix2pix results
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Unpaired data
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CycleGAN

Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017
37



CycleGAN results
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CycleGAN failures
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SPADE

Park et al. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2019
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AdaIN in SPADE
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SPADE
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LAMA

Suvorov et al. Resolution-robust Large Mask Inpainting with Fourier Convolutions. WACV 2022
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LAMA results
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LAMA high-res results
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StyleGAN-T

Sauer et al. StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis. ICML 2023 46



StyleGAN-T

Sauer et al. StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis. ICML 2023
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Comparison with diffusion models
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Conclusion

We reviewed following topics:
• reconstructing images from neural features
• various metrics on top of neural features used for image comparison
• style transfer: optimization-based and training networks for single and

several styles
• unconditional image generation with GANs
• conditional image generation with GANs
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