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Reconstructing images from neural features

Initialize x with white noise
Optimize x using following loss:

x* = argmin ||®(x) — CI>0||2 + AR(x)
x€RHXWXC
R(x) = Z(xi,j+l —x )+ Oy — Xy )°
i,j

Mahendran, Vedaldi. Understanding Deep Image Representations by Inverting Them. CVPR 2015



LPIPS: comparing two images
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Zhang et al. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CVPR 2018
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Human comparison

Q: Which one is a real artwork?

Random guess

Number of Participants

E Average: 10.31
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Figure 9. (Left) An example of our Artistic Style Transfer Confu-
sion Test. Only 40.6% participants successfully distinguished the
real artwork in this example. The answer can be found in our sup-
plementary material. (Right) The statistical results with a total of
61 participants, where each participant is asked 20 questions.



Inception score (1S)

For generated image x:

® p(yIx) should have low entropy
(generated image is somehow confidently classified)

e [p(ylx = G(2))dz should have high entropy
(generated images are varied)

Inception score:
IS(X) = E KL (py 1) 1l p(y))
Label prediction p(y | x) is computed using Inception model

Drawback: real images aren’t used for computing metric

Salimans et al. Improved Techniques for Training GANs. NIPS 2016



Fréchet Inception Distance (FID)

Assume that image features computed with Inception model have normal
distribution. Compute Fréchet (also called Wasserstein-2) distance
between two gaussians:

FID(X,, X,) = ||y —py || = Tr (er +Iy -2, /ZXrZXS)

Drawbacks:

l. Inception embeddings aren’t normally
distributed

2. Estimating (2048 x 2048)-dimensional
covariance matrices from a small sample
can lead to large errors

3. Has a bias that depends on the X, model

Heusel et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NIPS 2017
Chong, Forsyth. Effectively Unbiased FID and Inception Score and where to find them. CVPR 2020



CLIP and Maximum Mean Discrepancy (CMMD)

Use CLIP embeddings (more diverse than Inception embs) and MMD
distance:
CMMD(X,,X) = E k(x,x)+ E k(x,x)—2 E k(x,x,)

!
Xy, X XX X
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Jayasumana et al. Rethinking FID: Towards a Better Evaluation Metric for Image Generation. CVPR 2024

CMMD



Outline

|. Metrics in image generation
2. Style transfer
3. Unconditional generation with GANs

4. Conditional generation with GANs



Reference

Ours

Style transfer

Photo —> Art




Generating stylized images from noise
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Gatys et al. Image Style Transfer Using Convolutional Neural Networks. CVPR 2016



Deep Feature Interpolation

Deep feature space

Step 1: Map images to deep feature space
Target set (men w/facial hair)

Source set (men w/o facial hair)

Step 1: Mapping details

VGG-19 convolutional layers

) 3 wun

Input image
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Step 2: Compute
attribute vector

\
Step 3: Interpolate
in feature space

Step 4: Reverse map
to color space

Step 4: Reverse mapping details

Optimization
target

Total variation loss

Upchurch et al. Deep Feature Interpolation for Image Content Changes. CVPR 2017



Deep Feature Interpolation results




Training a neural network for a single style
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Fig. 2. System overview. We train an image transformation network to transform input
images into output images. We use a loss network pretrained for image classification
to define perceptual loss functions that measure perceptual differences in content and
style between images. The loss network remains fixed during the training process.

Johnson et al. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. ECCV 2016



Instance Normallzatlon

Content StyleNet IN (ours) StyleNet BN Gatys et al. Style

Ulyanov et al. Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and
Texture Synthesis. ICCV 2017 15



Adaptive Instance Normalization
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Huang, Belongie. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017
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Datasets: FFHQ

70k images of people with permissive license
1024 < 1024 resolution

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019



g

Datasets: LandscapeHQ

90k images of landscapes from Unsplash and Flickr with high resolution

Skorokhodov et al. Aligning Latent and Image Spaces to Connect the Unconnectable. ICCV 202|



GAN

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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GAN results

2l



100z =

Project and reshape

Radford, Metz. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. ICLR 2016
22



Woasserstein loss function
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Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimaxr GAN saturates and results in vanishing
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017



Wasserstein GAN training procedure

Algorithm 1 WGAN;, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, Neitic = -

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.
1: while 0 has not converged do

2 for t = 0, ..., Neritic do

3 Sample {x("}™  ~ P, a batch from the real data.
4 Sample {217 ~ p(z) a batch of prior samples.
5 Juw Vw [% 27;1 f'u'(-T(l)) - ,,_; ;11 fu)(gf)(z(i)))]
6: w < w + « - RMSProp(w, g.)

7 w + clip(w, —¢, ¢)

8 end for

9 Sample {29} ~ p(z) a batch of prior samples.

10: go —Vor 3" fulge(2)))
11: 0 < 6 — a- RMSProp(6, g¢)
12: end while

24



Progressive GAN
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Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018
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Progressive GAN
G

L2 L
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Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 x 16 images (a) to 32 x 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight «v increases linearly from 0 to 1. Here m and| 0.5x |refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The represents a layer that projects feature vectors to RGB colors and does
the reverse; both use 1 x 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

26



StyleGAN
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Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019
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Style mlxmg in SterGAN
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Superresolution

Ground Truth Bicubic

Ours (Kpmel) SRCNN [11] Ours (Zfeat)
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Inpainting

3l



Domain adaptation
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Discriminator
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Mirza, Osindero. Conditional Generative Adversarial Nets. arXiv: 14ll.1784
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pix2pix

Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017
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pix2pix results

Ground truth L1 cGAN L1+ cGAN




Unpaired data
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CycleGAN
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Figure 3: (a) Our model contains two mapping functions G : X — Y and ' : ¥ — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y’, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: © — G(z) — F(G(x)) =~ z, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) =y

Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017
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CycleGAN results

Input Output Input Output Input Output

apple — orange

orange - apple
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CycleGAN failures

Input Output

Input
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Semantic Manipulation Using S
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Park et al. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2019
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AdalN in SPADE
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Figure 2: In the SPADE, the mask is first projected onto an
embedding space and then convolved to produce the modu-
lation parameters « and 3. Unlike prior conditional normal-
ization methods, ~ and (3 are not vectors, but tensors with
spatial dimensions. The produced « and 3 are multiplied
and added to the normalized activation element-wise.
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SPADE
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Figure 4: In the SPADE generator, each normalization layer uses the segmentation mask to modulate the layer activations.
(left) Structure of one residual block with the SPADE. (right) The generator contains a series of the SPADE residual blocks
with upsampling layers. Our architecture achieves better performance with a smaller number of parameters by removing the
downsampling layers of leading image-to-image translation networks such as the pix2pixHD model [48].
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Suvorov et al. Resolution-robust Large Mask Inpainting with Fourier Convolutions. WACYV 2022
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LAMA high-res results

640x512

1920x1536
orig. res.

LaMa-Regular Big LaMa-Regular LaMa-Fourier Big LaMa-Fourier MADF [67]
45M 74M 27M 51M (ref. only) 85M

Figure 5: Transfer of inpainting models to a higher resolution. All LaMa models were trained using 256 x 256 crops
from 512 x 512, and MADF [67] was trained on 512 x 512 directly. As the resolution increases, the models with regular
convolutions swiftly start to produce critical artifacts, while FFC-based models continue to generate semantically consistent
image with fine details. More negative and positive examples of our 51M model can be found at bit.1ly/3k0galIK.

Original
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StyleGAN-T
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Sauer et al. StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis. ICML 2023
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StyleGAN-T

A forest rendered in the Unreal Engine. A painting of a fox in the style of starry night.

Sauer et al. StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis. ICML 2023
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Comparison with diffusion models

25

Do
S

Zero-shot FID3y
=
ot

=
(=)

Figure 1. Quality vs. speed in large-scale text-to-image synthesis.
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StyleGAN-T greatly narrows the quality gap between GANs and
other model families while generating samples at a rate of 10 FPS
on an NVIDIA A100. The y-axis corresponds to zero-shot FID on
MS COCO at 256 x256 resolution; lower is better.
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Conclusion

We reviewed following topics:

reconstructing images from neural features
various metrics on top of neural features used for image comparison

style transfer: optimization-based and training networks for single and
several styles

unconditional image generation with GANs
conditional image generation with GANs
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