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[1naH nekuuu

1. BapwnauymoHHbi aBTOKOAMpPOBLLKK (VAE)

2. BekTtopHble kBaHTOBaHHbIE VAE (VQ-VAE)

3. Anddy3moHHble Mogenu
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An compressed low dimensional
representation of the input.

Hinton et al. Reducing the dimensionality of data with neural networks. Science 2006
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Z=p+oQOE€ representation of the input.
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Kingma, Welling. Auto-Encoding Variational Bayes. ICLR 2014




dyHKkumMa notepb VAE

£ = dx,x') + KL(qy(z|x) | #(0,D)

reconstr. err  gauss. prior on latent distribution
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Kingma, Welling. Auto-Encoding Variational Bayes. ICLR 2014
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Reparametrization trick &>

N

To compute gradients V,, through sampling, substitute sampling
2
z ~ L/V(pd)) 0-4))
with deterministic function that depends on separate noise variable

2=, +0yO0E, e~ N0,

This way sampled values £ during backpropagation may be seen as constant
that don’t depend on encoder parameters ¢

Kingma, Welling. Auto-Encoding Variational Bayes. ICLR 2014
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VQ-VAE
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Oord et al. Neural Discrete Representation Learning. NeurlPS 2017
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VQ-VAE learning &>

z,(x) —sg[e] |§

reconstr. err dict learning regularization of image features

Z = deex) + |Jsglz0] = ey +

-

Here sg is a stop gradient function, which makes operand non-updated constant.
k-means step with EMA may be used to update dictionary instead of the second
term



VQ-VAE-2

training sampling
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Original Reconstruction Generation

Razavi et al. Generating Diverse High-Fidelity Images with VQ-VAE-2. NeurlPS 2019



[Tpmep pekoHcTpyKkunn VQ-VAE-2
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Razavi et al. Generating Diverse High-Fidelity Images with VQ-VAE-2. NeurlPS 2019
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Esser et al. Taming Transformers for High-Resolution Image Synthesis. CVPR 2021
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Esser et al. Taming Transformers for High-Resolution Image Synthesis. CVPR 2021
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Large-scale dVAE (similar to VQ-VAE) + transformer prior:

« 250M (image, text) pairs

« image VAE was trained on 64xV100 GPUs

« ResNets as image encoder and decoder

* image dict size K = 8192, 256x256 — 32x32

* transformer (12B params) was trained on 1024xVV100 GPUs

« efficient implementation of distributed mixed precision training
(params, activations and Adam moments are stored in 16 bits)

Ramesh et al. Zero-Shot Text-to-Image Generation. arXiv:2102.12092
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(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog in a christmas ‘“backprop”. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “backprop”. backprop

neon sign

Quality of samples may be improved using CLIP scoring

Ramesh et al. Zero-Shot Text-to-Image Generation. arXiv:2102.12092
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Denoising diffusion probabilistic models

forward process

reverse process

DDPM consists of two processes:
« forward diffusion process gradually adds gaussian noise to input
* reverse denoising process that learns to generate data by denoising

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020
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Diffusion (forward process) @

q(xtlxt—l) = JV(\/ 1-B.x._1,BD

Forward sampling using reparametrization trick:

x,=+1-B,x,_;+ \/,B_te, e~ N0,
x, = \/ax,+/1-a¢e a=I_«1-p)
B, is a noise schedule designed s.t.
qQxy|xg) ~ A (0,1)

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020



Diffusion (reverse process)

q(xt_l |xt) = </‘/(’19(‘xt9 t)) O-EI)

Substitute p1, with £, due to reparametrization trick. Sampling:
x; ~ A0,
fort=T,...,1:

z ~ N(0,)

1 l-a .
X 1= & (xt — \/1—*& Eq(x,, t)) +0,2 €£y— tralngd UNet
«,, 0, — diff. parameters

return x,

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020



Learning to denoise at any step

denoise x,

repeat until converged:
X, ~ q(xg)
t ~%{1,T}
£~ N0,
Take gradient step on

v, H"—'_fe V& Xo + /1 —&te,t) 2




DDIM

DDPM process
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Song et al. Denoising Diffusion Implicit Models. ICLR 2021
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DDIM

X, —/1—a;-e(x;)

xj:\/a_j \/a—i

move back towards x,

predic'ted X,

Song et al. Denoising Diffusion Implicit Models. ICLR 2021
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Pe3tome nekyunu <)

BapuaunoHHble aBTOKOAUPOBLLUMKA — BaXKHbIN 3Tan B 06nacTu reHepaLumnm
n3o0paxkeHnin, okasaBLUMe CUNbHOE BNUSHUE Ha UCCeJoBaHNUA B 9TOM
HanpaBneHnn

BekTopHble kBaHTOBaHHble VAE no3Bonnnu reHepmpoBaTh N300paxXeHuUs
B BbICOKOM pa3peLleHnn, a TakKe 0TKa3aTbCA OT YCIOBUA «HOPMaSibHOCTU»
pacnpeneneHusd

OuddysnoHHble mogenn — kBuHtacceHumns ngen GAN n VAE

Ondody3noHHble MOAENN ABMAIOTCA COBPEMEHHbLIMW NOAX04AaMU K reHepaLuunm
KOHTEHTa



