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Hinton et al. Reducing the dimensionality of data with neural networks. Science 2006
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VAE loss function

£ = d(x,x") + KL(qy(21x) Il #(0,D)

reconstr. err gauss. prior on latent distribution

only reconstr. err only gauss. prior combination
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Reparametrization trick

To compute gradients V,, through sampling, substitute sampling
2
zZ~N (p¢, o ¢)
with deterministic function that depends on separate noise variable

Z =My +0y0E, e~ N0,

This way sampled values £ during backpropagation may be seen as constant
that don’t depend on encoder parameters ¢
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Oord et al. Neural Discrete Representation Learning. NeurIPS 2017



VQ-VAE learning

2= doex) + flsglzcol = el + Bllz,00 - sglel|2

reconstr. err dict learning regularization of image features

Here sg is a stop gradient function, which makes operand non-updated
constant. k-means step with EMA may be used to update dictionary instead
of the second term



VQ-VAE-2
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Razavi et al. Generating Diverse High-Fidelity Images with VQ-VAE-2. NeurlPS 2019




VQ-VAE-2 reconstruction example
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Esser et al. Taming Transformers for High-Resolution Image Synthesis. CVPR 202I



unconditional

VQ-GAN results

conditional




DALL-E

Large-scale dVAE (similar to VQ-VAE) + transformer prior:
® 250M (image, text) pairs
* image VAE was trained on 64 XV 100 GPUs
® ResNets as image encoder and decoder
* image dict size K= 8192, 256 X256 — 32X 32
¢ transformer (12B params) was trained on 1024 XV 100 GPUs

¢ efficient implementation of distributed mixed precision training
(params, activations and Adam moments are stored in 16 bits)

Ramesh et al. Zero-Shot Text-to-Image Generation. arXiv:2102. 12092
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(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that top as a sketch on the bottom

accordion. sweater walking a dog reads “backprop”. backprop
neon sign

Quality of samples may be improved using CLIP scoring

Ramesh et al. Zero-Shot Text-to-Image Generation. arXiv:2102. 12092
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Denoising diffusion probabilistic models

forward process

reverse process

DDPM consists of two processes:
e forward diffusion process gradually adds gaussian noise to input
* reverse denoising process that learns to generate data by denoising

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020



Diffusion (forward process)

qix [x,_1) = A (/1= Bex,_1,BD

Forward sampling using reparametrization trick:
x,=+\/1-B,x,_;++/B.e, €~N¥(0,D
x, =\/a,x,+/1—-a,¢e a =I_,1-p)

B, is a noise schedule designed s.t.
q(x;lxy) ~ A (0,



Generation (reverse process)

q(xt_l |xt) = '/V(pg(xt) t), O.tzI)

Substitute p1, with €, due to reparametrization trick. Sampling:
xp~ N0,

fort=T1T,...,1:

2z~ N0,

_ 1 1-a H
X1 = g\ Xe ﬁfe("p t)) +0,2 €, — trained UNet

a,, 0, — diff. parameters
return x,



Learning to denoise at any step

repeat until converged:
Xy ~ q(xg)
t ~%{1,T}
e~ N(0,D
Take gradient step on

Y, ||£ £ (\/_x0

denoise x,

VIt



Connection to SDEs

Forward sampling

x,=\/1-B,x,_, ++/B,&, €~N(0,D

is a discretization of a stochastic differential equation (SDE):

1
dx, = - E,B(t)xtdt + v dw,, dw, = e\/a

drift term diffusion term
(pulls towards mode)  (injects noise)

Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 202I

20



Connection to SDEs

Forward diffusion process (fixed)

" e

X0

1
dx, = —ZpOxdt +/BD)dw, dw, = £\/dt

drift term diffusion term
(pulls towards mode)  (injects noise)

20



Generation (reverse process)

Forward SDE has corresponding reverse SDE:

1
dx, = (—Eﬁ(t)xt - P(t)ey(x,, t)) dt + /B(t)d @,

and reverse ODE:
1
dx, = _Eﬁ(t) (x, +&4(x,, 1)) dt

Consequences:

e diffusion process may be generalized through SDE to get other
parameterizations

* high-order ODE solvers may be used for accelerating inference

® deterministic encoding and generation
2



DDIM

DDPM process

2

Song et al. Denoising Diffusion Implicit Models. ICLR 202|
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Song et al. Denoising Diffusion Implicit Models. ICLR 202I
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Conditional generation
Conditional sampling may be achieved using three methods:

l. Explicit conditional training. Train on pairs (x, y) and modify €, to
depend on y

2. Classifier guidance. Guide sampling process to class y by adding
classifier gradient Yy, logpy,(y1x,) to £4(x,, t). Need classifier trained
on noisy images

3. Classifier-free guidance. Train conditional and unconditional diffusion
model in a single neural network: £,(x,, y,t) and g,5(x,, y = &, t).
Disable conditioning using special null token @. During inference mix
noise from conditional and unconditional models. Better than 2
because DM doesn’t train to generate adversarial attacks for classifier

Dhariwal, Nichol. Diffusion models beat gans on image synthesis. NeurlPS 202I
Ho, Salimans. Classifier-Free Diffusion Guidance. NeurlPS 202!
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Cascaded diffusion models
Train 3 conditional models, one for low-res generation from class label and
two superresolution models. Augment images with gaussian blur or more
complex superres augmentations. Models may be trained in parallel

256 %256

Class ID = 213
“Irish Setter” q “

_—
Model 1 o

Condition on class using normalizations, condition on low-res image via
concatenation to input tensor

Ho et al. Cascaded Diffusion Models for High Fidelity Image Generation. JMLR 2022
Zhang et al. Designing a Practical Degradation Model for Deep Blind Image Super-Resolution. ICCV 202|
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DALL-E 2

CLIP objective
"a corgi
playing a
flame |[M&XES & | 7T
throwing
trumpet” A0000
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—O+O+Of—»
O
prior decoder

Given pretrained CLIP model, train 2 models:
e diffusion decoders (UNet, 64—256— 1024) that produce image x
conditioned on CLIP image features z; using classifier-free guidance
e diffusion prior (transformer) that generates CLIP image features z;
from caption y and CLIP text features z,

Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv:2204.0612 26



Image variations

27



Image interpolation

Rotate between CLIP image features Z; and z; using spherical
interpolation

28



Text diffs

a photo of a victorian house — a pholo ofa modem house

@&,,_. l‘i’&. s

a photo of an adult lion — a photo of lion cub

aphoto of a landscape in winter — a photo of a landscape in fall

Compute text diff z; = norm(z, — 2, ). Spherically interpolate z; towards z,

29



Imagic

Input Image Edlted Image Input Image Edited Image

T® L7

Target Text: “A bird spr'eadmg “A person giving “A goat jumping
the thumbs up” over a cat”

Input Image Edited Image

Target Text: “A sntmg dog. “Two klssmg “A children’s drawing
parrots” of a waterf:

Kawar et al. Imagic: Text-Based Real Image Editing with Diffusion Models. CVPR 2023
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Imagic

(A) Text Embedding Optimization (B) Model Fine-Tuning

Reconstruction Loss Reconstruction Loss
Ll Foo oo oottt s o o o o A
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Input Input

(C) Interpolation & Generation
Target Emb ©igt e Optimized Emb €opt

orty
nzpEm / n
un sl == -- ey -- —>.=:E E. Fine-Tuned
anEety H interpolate Diffusion Process
"A bird spreading wings."

Cigt €opt Output

* optimize e, for 100 steps using 64X 64 diffusion model

e finetune 64 X 64 diffusion model and 64—256 SR diffusion model for
1500 steps

e overall it takes 8 minutes on 2XTPUv4 (=3 XAI100 GPUs) to
transform a single image

Kawar et al. Imagic: Text-Based Real Image Editing with Diffusion Models. CVPR 2023
30



Latent diffusion models

e N\ Latent Space ondmonln
B-I— Diffusion Process ————> Eemanth
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by

Pixel Space,
pd

denoising step crossattention  switch  skip connection concat

Train an autoencoder (similar to VQ-GAN), fit denoising UNet with
attention conditioning to model prior

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022
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ControlNet
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Zhang, Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models. ICCV 2023
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ControlNet
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Zhang, Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models. ICCV 2023
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ControlNet

Test input training step 100 step 1000

step 6100 step 6133 step 8000 step 12000

Zhang, Agrawala. Adding Conditional Control to Text-to-lmage Diffusion Models. ICCV 2023
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ControlNet

Sketch Normal map Depth map Ca dge  M-LSD[24] line HED[91]edge = ADE20k[96] seg.
AN

Zhang, Agrawala. Adding Conditional Control to Text-to-lImage Diffusion Models. ICCV 2023

Human
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ControlNet

 BEEE

Input “a high-quality and extremely detailed image”

Figure 11: Interpreting contents. If the input is ambiguous
and the user does not mention object contents in prompts,
the results look like the model tries to interpret input shapes.
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Figure 12: Transfer pretrained ControlNets to community
models [ 16, 61] without training the neural networks again.

Zhang, Agrawala. Adding Conditional Control to Text-to-lmage Diffusion Models. ICCV 2023
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Summary

We reviewed following topics:

* variational autoencoders — an important class of probabilistic models
that highly influenced the field

® vector-quantized variational autoencoders that improve basic VAE
towards high-quality generation

¢ diffusion models — a modern class of generative models that
borrowed several important ideas from GANs and VAEs

* most influential diffusion models are cascaded DMs and LDMs. Basic
approaches for conditional generation are classifier-free guidance and
ControlNet adapter for lightweight finetuning

33
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