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Idea
• Make models multimodal
• Use world knowledge and reasoning from LLMs
• Explore various applications that emerge at the intersection of the

modalities
• Boost quality of models using patterns in multimodal data that don’t

exist in unimodal data
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Static benchmarks: GQA

Hudson et al. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering.
CVPR 2019
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Static benchmarks: GQA

• questions generated using scene
graph of images

• 22.6M questions for 113k images
• evaluation metric: accuracy along

with 5 more detailed metrics

Hudson et al. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering.
CVPR 2019
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Static benchmarks: AI2D
• 15k mutiple

choice questions
for 5k school
grade diagrams

• diagram parse
graphs are
available

• 2 tasks: image �
parse graph;
parse graph,
question � answer

• evaluation metric:
accuracy

Kembhavi et al. A Diagram Is Worth A Dozen Images. ECCV 2016 7



Static benchmarks: MMMU
• 11.5k questions from 6 university disciplines
• answers are extracted using regexps
• evaluation metric: accuracy

Yue et al. MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert
AGI. CVPR 2024
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Static benchmarks: MMMU

Yue et al. MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert
AGI. CVPR 2024
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Static benchmarks: TextVQA

• 45k questions for 28k images, 10
answers per question

• evaluation metric: VQA accuracy
(100% correct if 3 humans
provided that answer)

Singh et al. Towards VQA Models That Can Read. CVPR 2019
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Static benchmarks: DocVQA

• 50k questions for 12k images
• documents mostly from

1960–2000, industries: tobacco,
food, drug, chemical, fossil fuel

• evaluation metrics: Average
Normalized Levenstein
Similarity, Accuracy

Mathew et al. DocVQA: A Dataset for VQA on Document Images. WACV 2021
11



Static benchmarks: DocVQA

Mathew et al. DocVQA: A Dataset for VQA on Document Images. WACV 2021 12
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WildVision-Arena

14



UI
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Question distribution
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Battles
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Elo computation
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Leaderboard
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Per-domain quality
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WV-Bench
500 data samples from Arena with expert annotation
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WV-Bench

Evaluation is done using GPT-4o as judge and Claude-3-Sonnet as reference
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WV-Bench
Evaluation is done using GPT-4o as judge and Claude-3-Sonnet as reference
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WV-Bench samples
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WV-Bench samples
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WV-Bench samples
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WV-Bench samples
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WV-Bench samples
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WV-Bench samples
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WV-Bench samples
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General scheme
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Encoder: CLIP

400M (image, text) pairs, 500×V100 GPUs for pretraining

Radford et al. Learning transferable visual models from natural language supervision. ICML 2021
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Encoder: SigLIP

CLIP loss Sigmoid loss

• turn multiclass classification into binary classification of all pair
(image, text) combinations

• no global normalization, hence better scaling and memory efficiency

Zhai et al. Sigmoid Loss for Language Image Pre-Training. ICCV 2023
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High-res: slicing and dual-branch

Liu et al. Improved Baselines with Visual Instruction Tuning. CVPR 2024
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High-res: slicing and dual-branch

Guo et al. LLaVA-UHD v2: an MLLM Integrating High-Resolution Feature Pyramid via Hierarchical Window
Transformer. arXiv:2412.13871
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High-res: linear projection
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Mixture of Encoders (MoE)

Shi et al. Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders. ICLR 2025
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Mixture of Encoders (MoE)

Shi et al. Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders. ICLR 2025
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MoVA

Zong et al. MoVA: Adapting Mixture of Vision Experts to Multimodal Context. NeurIPS 2024
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MoVA

Zong et al. MoVA: Adapting Mixture of Vision Experts to Multimodal Context. NeurIPS 2024
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MoVA

Zong et al. MoVA: Adapting Mixture of Vision Experts to Multimodal Context. NeurIPS 2024 42



Context compression: MQT

Hu et al. MQT-LLaVA: Matryoshka Query Transformer for Large Vision-Language Models. NeurIPS 2024
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Context compression: MQT

Hu et al. MQT-LLaVA: Matryoshka Query Transformer for Large Vision-Language Models. NeurIPS 2024
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Connector
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LLaVA

• LLM — Vicuna-7B
• Vision Encoder — CLIP ViT-L/14
• Connector — Linear
• Train in 2 steps: 1) Projection 2) Projection & LLM

Liu et al. Visual Instruction Tuning. NeurIPS 2023
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LLaVA

Liu et al. Visual Instruction Tuning. NeurIPS 2023 48



Molmo

CLIP ViT-L/14 336px, high-res is
processed using overlapped slicing
Various LLMs

Training the whole model, no
freezing:

1. Pretrain on PixMo
2. Finetune on PixMo and academic

datasets

Deitke et al. Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models.
arXiv:2409.17146
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PixMo (Pixels for Molmo)
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PixMo (Pixels for Molmo)
1. PixMo-Cap for pretraining:

3 labellers speak for 60 seconds → transcribe → improve with LLM →
summarize with LLM; 712k images, 1.3M captions

2. PixMo-AskModelAnything:
labellers use language-only LLMs to semi-automatically generate
question; 73k images, 162k question-answer pairs

3. PixMo-Points:
428k images, 2.3M question-point pairs
Augment prev dataset with points, 29k images and 79k
question-answer pairs

4. PixMo-CapQA, PixMo-Docs, PixMo-Clocks: generated using
an LLM
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Molmo openness
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Molmo evaluation
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Molmo discussion

Benchmarks and human evaluation agree with exception of Qwen2-VL.
Key results:

1. MolmoE 1B nearly matches GPT-4V
2. Molmo 7B-D and Molmo 7B-O are between GPT-4V and GPT-4o
3. Molmo 72B is near to GPT-4o
4. 72B model outperforms Gemini 1.5 Pro and Claude 3.5 Sonnet
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QWen2.5-VL

• similar arch,
reworked ViT

• closed data, incl.
PixMo

• 2-step training of
full model

Bai et al. Qwen2.5-VL Technical Report. arXiv:2502.13923 55



LISA

Lai et al. LISA: Reasoning Segmentation via Large Language Model. CVPR 2024
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OMG-LLaVA

Zhang et al. OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding. NeurIPS
2024 57



OMG-LLaVA

Zhang et al. OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding. NeurIPS
2024 58



Conclusion

We reviewed following topics:
• Intro to image MLLMs and their applications. Multimodal LLMs

seems to be a step towards AGI with lots of interesting applications
and challenges.

• Benchmarking MLLMs. It may be done using static benchmarks (as
in CV or NLP) or using Arenas. Full-scale evaluation is very
challenging, since models aim to solve a lot of useful tasks.

• General architecture of MLLMs. Typically models consist of vision
encoder(s), connector, LLM and optional output modality decoder.
There are a number of technical nuances that help to obtain best
quality
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