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Focus on VLM models:  Image + Text → Text

Classify multimodal models at a high level

Explore code & architecture of the most vivid exemplars 

Investigate general approaches applicable to other models
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Multimodal models can be classified in 2 main types (4 subtypes) 
based on the fusion of input modalities 

Shakti N. Wadekar et al. The Evolution of Multimodal Model Architectures. 28 May 2024. 

1. Deep Fusion
deeply fuses multimodal inputs 

within internal layers

2. Early Fusion
multimodal inputs are fed to the 

model rather to its internals 

https://arxiv.org/search/cs?searchtype=author&query=Wadekar,+S+N
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Flamingo model by 
DeepMind is one of the first 
multimodal models!
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Input modalities are deeply fused into the internal layers of the LLM using standard cross-attention layer 

before
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OpenFlamingo
Otter
Multimodal-GPT

after
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OpenFlamingo follows Flamingo architecture

vision model
CLIP ViT-L/14
(NFNet)

language model
RedPajama / MPT
(Chinchilla)



depth = 6

num_latents, dim
(we have 64

frames = 1

(v, dim)

OpenFlamingo : 
Perceiver

7

b, t, f, v, d   →   b, t, (f * v), d   →   b, t, l, d

d = 1024 l = 64
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Do not have video modality 
in OpenFlamingo
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frames = 1

batch size b
image examples t
video frames f
visual tokens v
embed dim d

OpenFlamingo : 
Perceiver

b, t, f, v, d   →   b, t, (f * v), d   →   b, t, l, d

d = 1024 l = 64
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1. freeze the pretrained LM blocks 

2. insert gated cross-attention 
dense blocks between the 
original layers

3. keep leyers gated to keep LM 
intact at initialization

4. queries = LM inputs 
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1. freeze the pretrained LM blocks 

2. insert gated cross-attention 
dense blocks between the 
original layers

3. keep leyers gated to keep LM 
intact at initialization

4. queries = LM inputs 

tanh-gating mechanism — 
multiples output of newly initialized 
layer by tanh(𝛼)

OpenFlamingo: Feature Fusion



Deep Fusion:
Custom Layers Deep Fusion 
(CL-DF)

1.2
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LLaVA – by Microsoft,  MoE-LLaVA – Peking University: Mixture-of-Experts layer

Stage 1
adapt visual tokens
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LLaVA – by Microsoft,  MoE-LLaVA – Peking University: Mixture-of-Experts layer

Stage 1
adapt visual tokens

vision model
CLIP-Large
(following LLaVA-1.5)

language model
LLaMA / Vicuna /Qwen… 
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LLaVA – by Microsoft,  MoE-LLaVA – Peking University: Mixture-of-Experts layer

Stage 1
adapt visual tokens

Stage 2
multi-modal understanding 

Stage 3

many LLaMAs!



MoE-LLaVA: Router 
Seminar 1

Introduction to 
MLLMs

 

11

1 have E experts, each expert = FFN 

2 router = linear layer that assigns probabilities to experts

3 calculate weighted sum



Early Fusion:
Non-Tokenized Early Fusion 
(NT-EF)

2.1
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Image-Text pairs Multi-task and 
Interleaved VL Data

Chat Interleaved 
VL Data

Stage 1: Pretraining Stage 2: Multi-task 
pretraining

Stage 3: Supervised 
Fine-tuning vision model

OpenClip ViT-bigG

language model
Qwen-7B 



Early Fusion:
Tokenized Early Fusion (T-EF)

2.2



T-EF: Tokenized  
Seminar 1

Introduction to 
MLLMs

 

14

Inputs are tokenized using a common tokenizer or modality specific tokenizers 

decoder-only 
transformer

LaVIT
TEAL
CM3Leon
VL-GPT

encoder-decoder 
transformer

Unified-IO
Unified-IO
4M
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1

2

3

Classified multimodal models: Deep & Early Fusion

Focused on VLM models:  Image + Text → Text

Investigated carefully Flamingo, MoE-LLaVA, Qwen-VL, and 
LaVIT models
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  I      like       sleep    ing

E


