

Seminar 1: Introduction to Multimodal Models

Supplementary slides to [Google
Colab notebook](#)

Zinkovich Viktoriia

Introduction

1

Focus on **VLM models**: Image + Text → Text

Introduction

- 1 Focus on **VLM models**: Image + Text → Text
- 2 Classify multimodal models at a **high level**

Introduction

- 1 Focus on **VLM models**: Image + Text → Text
- 2 Classify multimodal models at a **high level**
- 3 Explore code & architecture of the **most vivid exemplars**

Introduction

- 1 Focus on **VLM models**: Image + Text → Text
- 2 Classify multimodal models at a **high level**
- 3 Explore code & architecture of the **most vivid exemplars**
- 4 Investigate **general approaches** applicable to other models

High-level Classification

Multimodal models can be classified in 2 main types (4 subtypes) based on the **fusion of input modalities**

1. Deep Fusion

deeply fuses multimodal inputs
within internal layers

2. Early Fusion

multimodal inputs are fed to the
model rather to its internals

High-level Classification

Multimodal models can be classified in 2 main types (4 subtypes) based on the **fusion of input modalities**

1. Deep Fusion

deeply fuses multimodal inputs within internal layers

1.1. Standard
Cross-Attention
(SC-DF)

2. Early Fusion

multimodal inputs are fed to the model rather to its internals

1.2. Custom
Layers (CL-DF)

High-level Classification

Multimodal models can be classified in 2 main types (4 subtypes) based on the **fusion of input modalities**

1. Deep Fusion

deeply fuses multimodal inputs within internal layers

1.1. Standard
Cross-Attention
(SC-DF)

1.2. Custom
Layers (CL-DF)

2. Early Fusion

multimodal inputs are fed to the model rather than its internals

2.1. Non-tokenized
(NT-EF)

2.2. Tokenized
(T-EF)

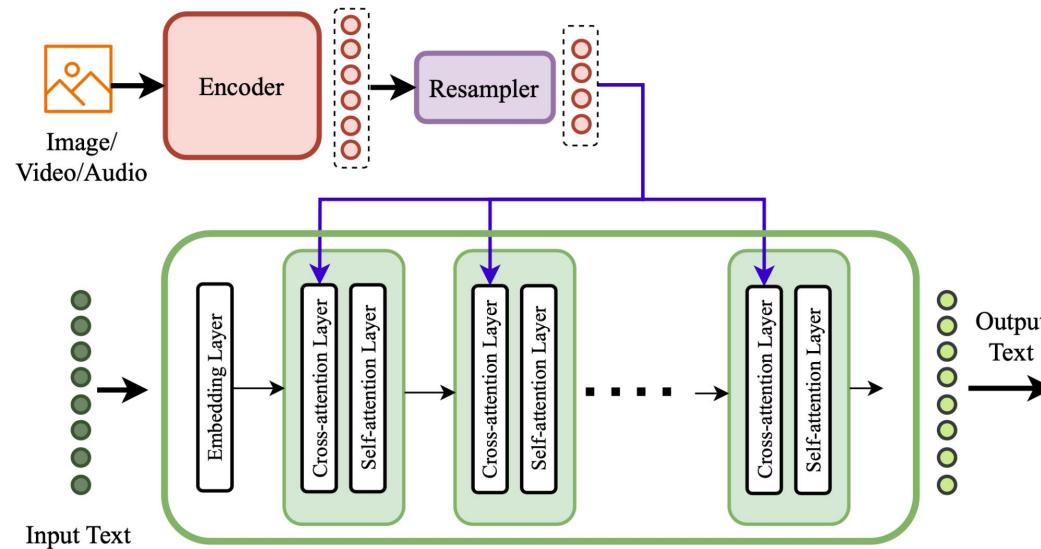
1.1

Deep Fusion:

Standard Cross-Attention Deep Fusion (SC-DF)

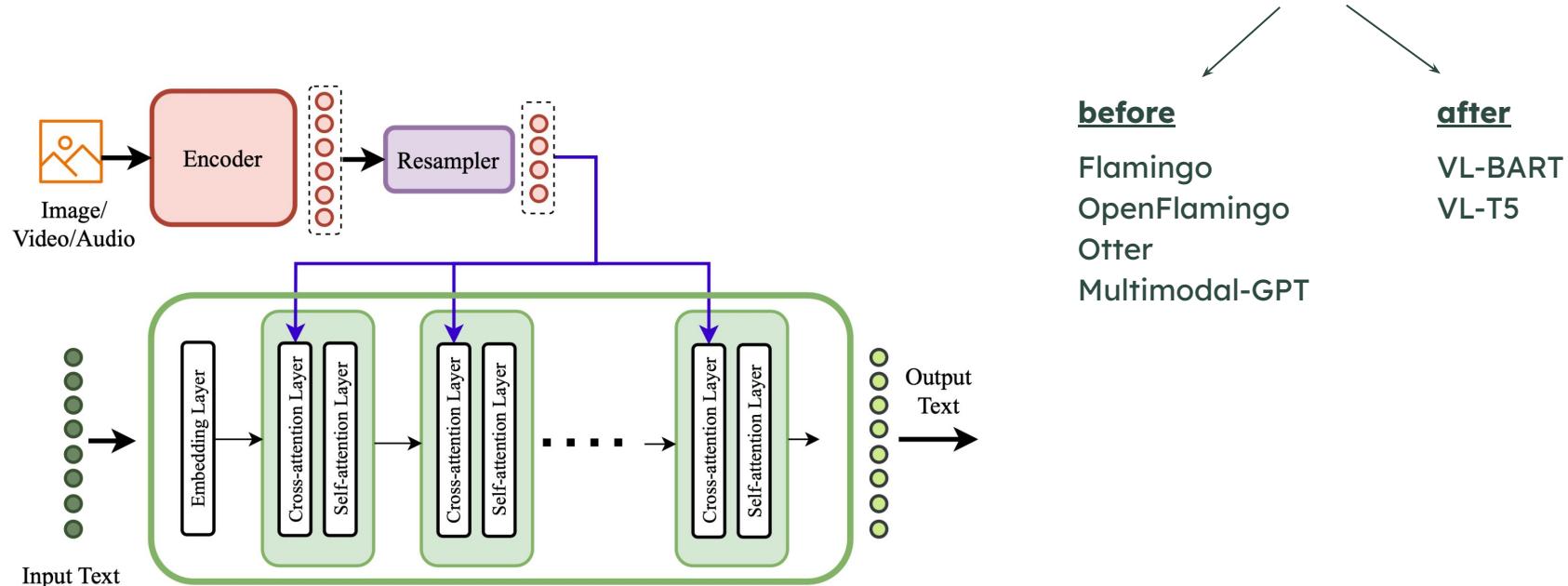
SC-DF: Standard Cross-Attention

Input modalities are deeply fused into the **internal layers** of the LLM using **standard cross-attention layer**



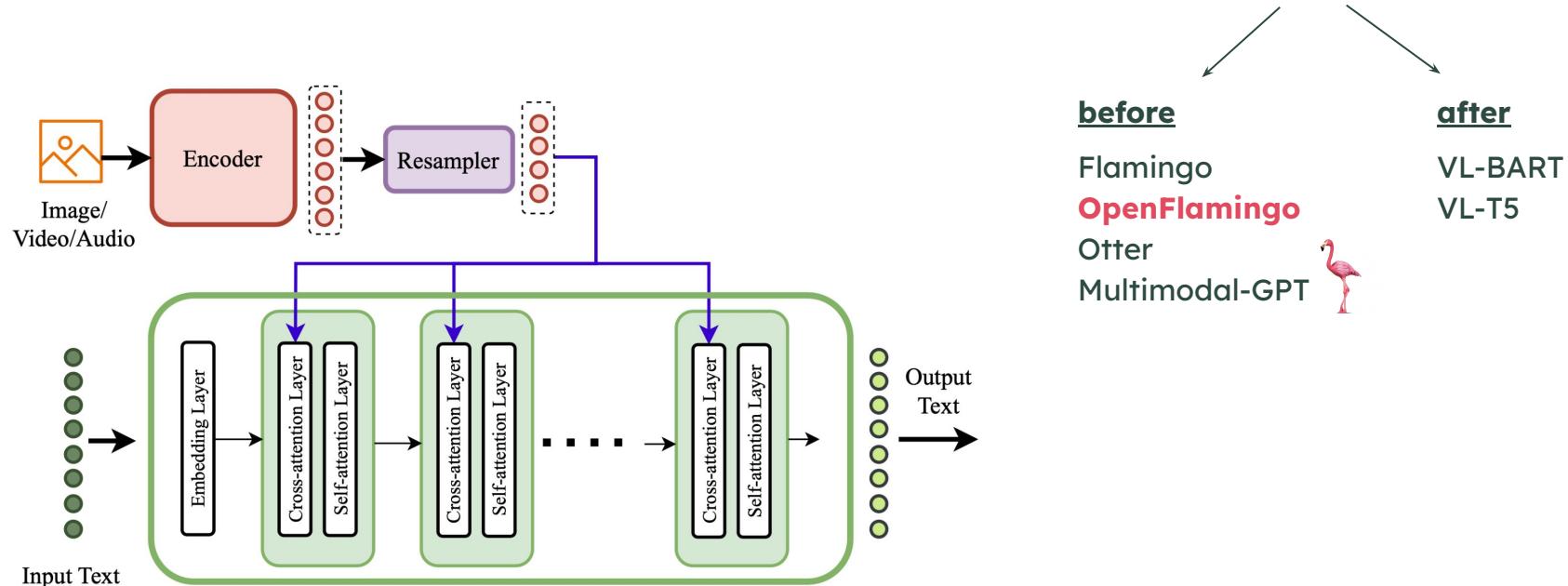
SC-DF: Standard Cross-Attention

Input modalities are deeply fused into the **internal layers** of the LLM using **standard cross-attention layer**



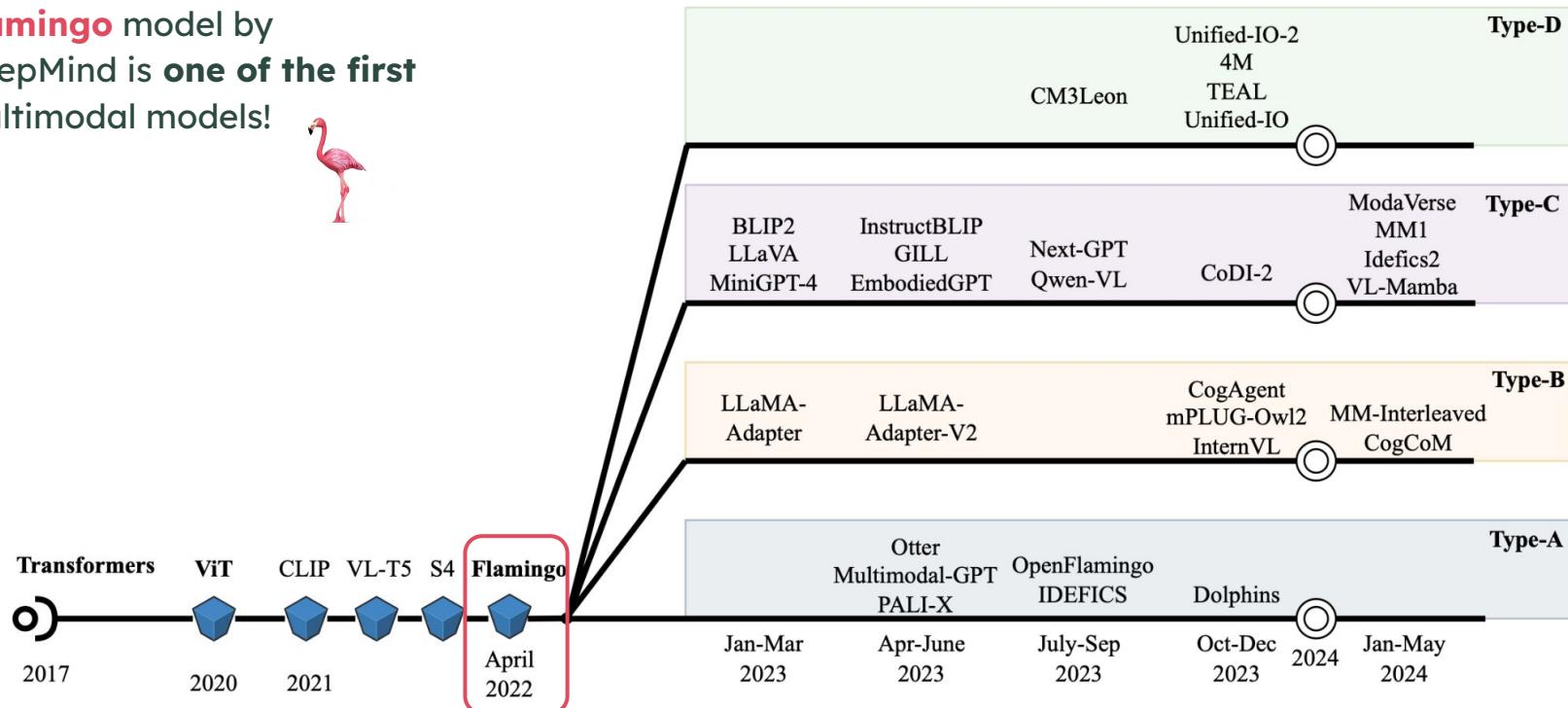
SC-DF: Standard Cross-Attention

Input modalities are deeply fused into the **internal layers** of the LLM using **standard cross-attention layer**



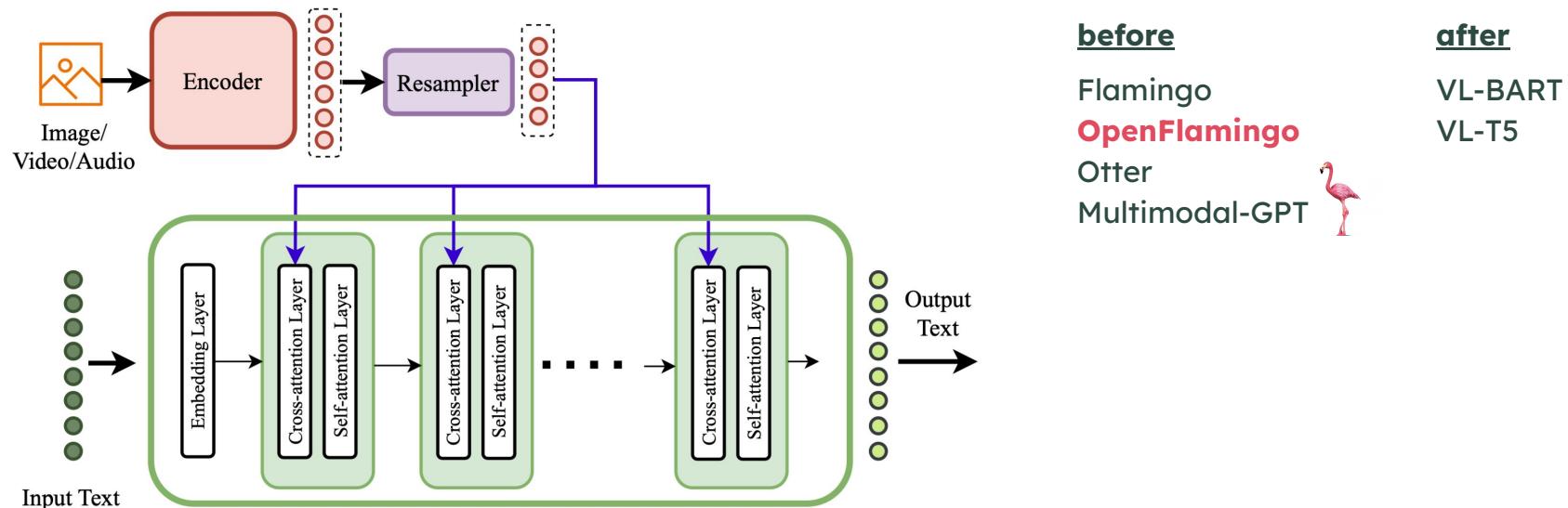
SC-DF: Standard Cross-Attention

Flamingo model by
DeepMind is **one of the first**
multimodal models!

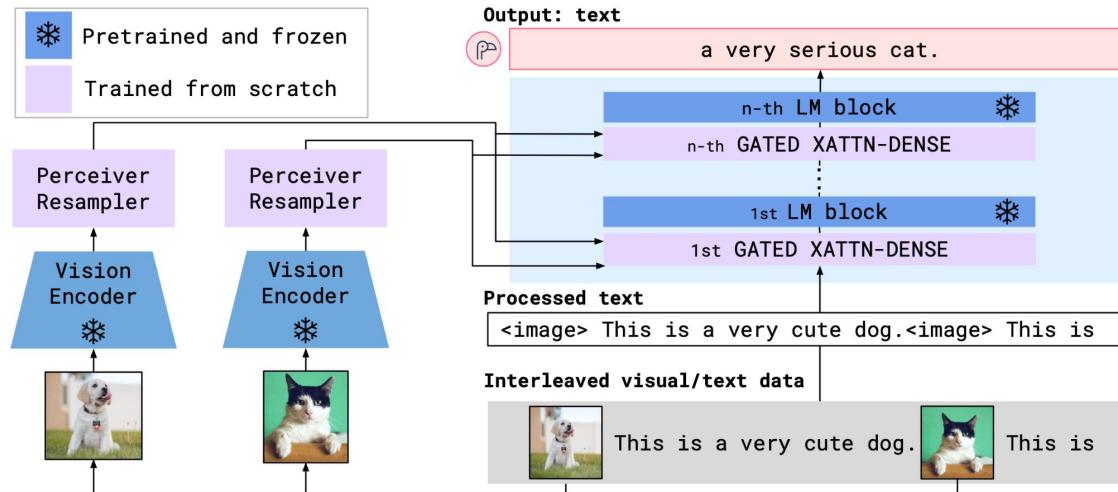


SC-DF: Standard Cross-Attention

Input modalities are deeply fused into the **internal layers** of the LLM using **standard cross-attention layer**



SC-DF: OpenFlamingo (Nov 2022)



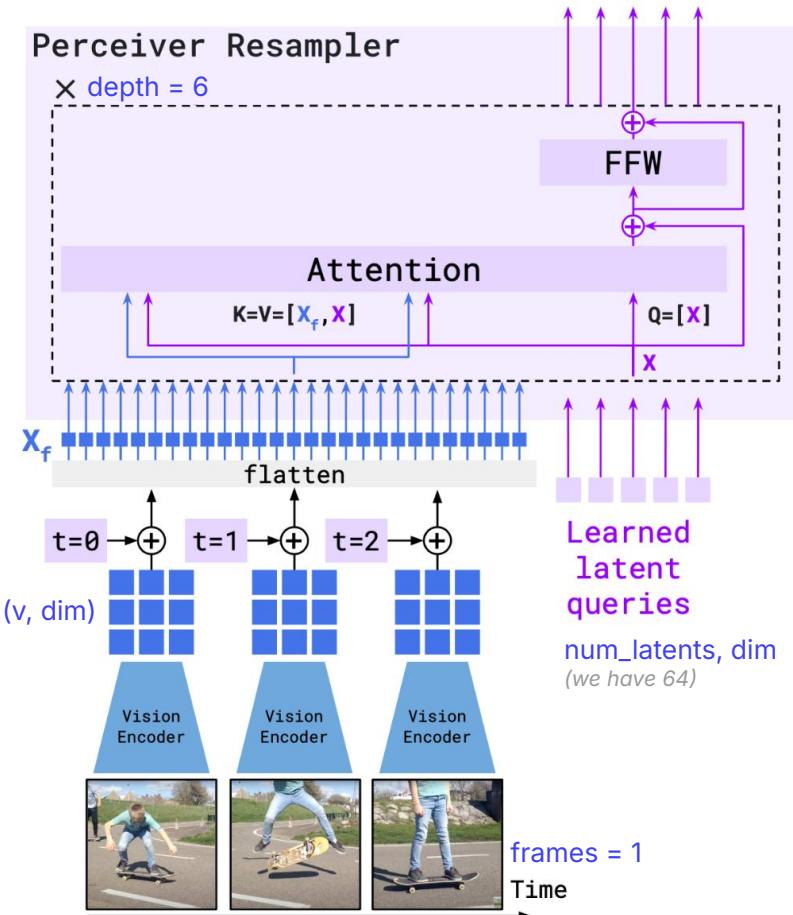
OpenFlamingo follows Flamingo architecture

vision model
CLIP ViT-L/14
(NFNet)

language model
RedPajama / MPT
(Chinchilla)

OpenFlamingo :

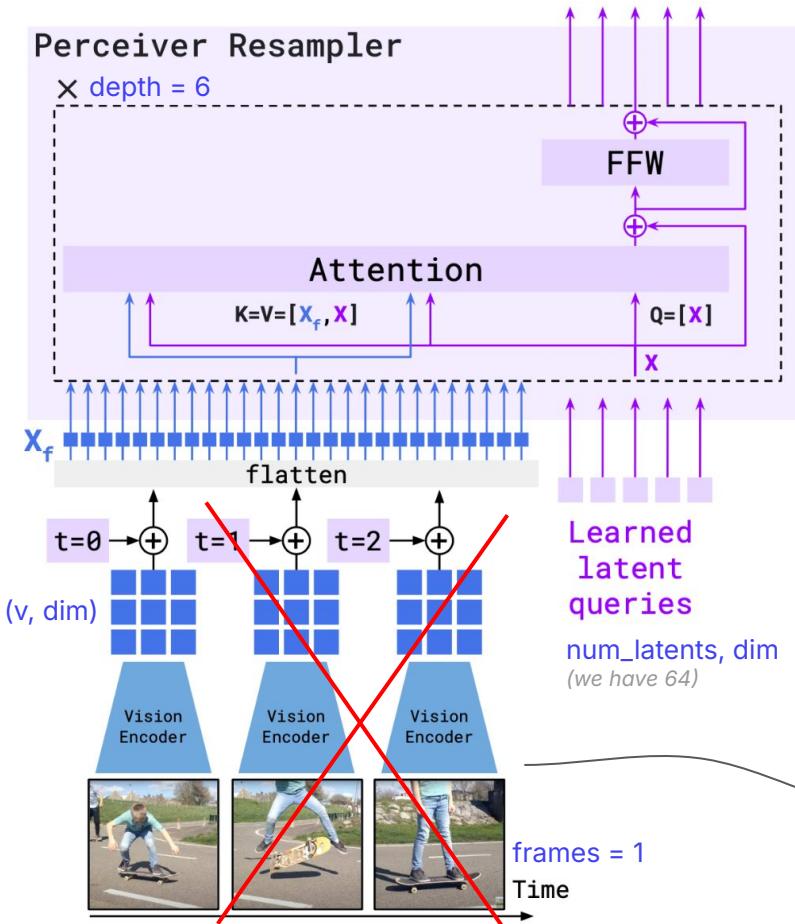
Perceiver



$b, t, f, v, d \rightarrow b, t, (f * v), d \rightarrow b, t, l, d$

$d = 1024$

$l = 64$



OpenFlamingo :

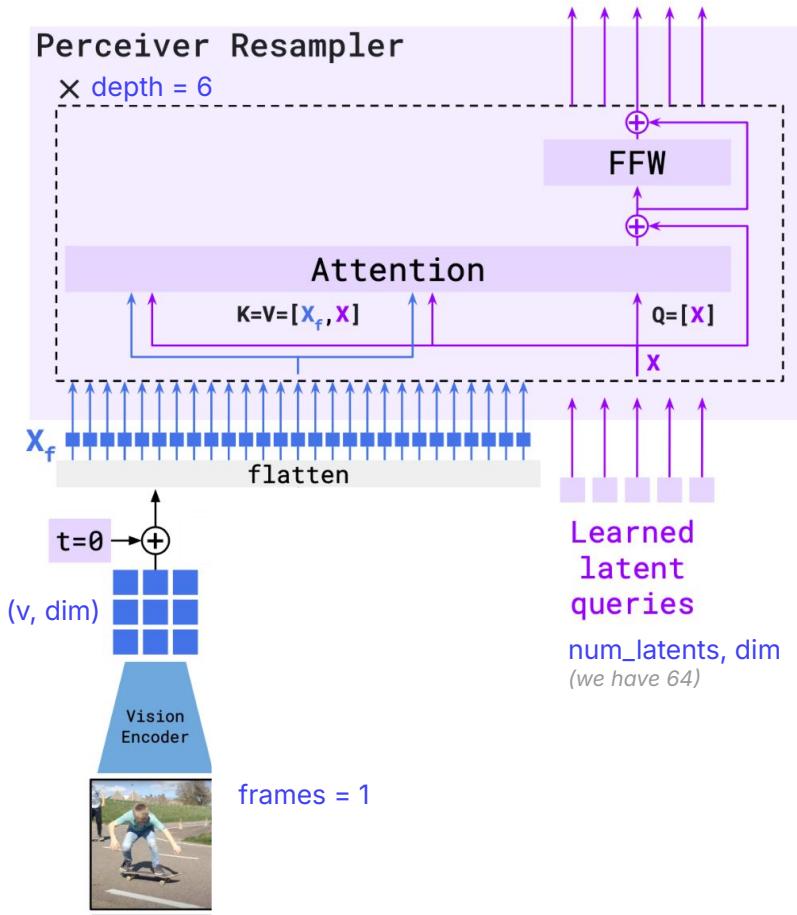
Perceiver

$b, t, f, v, d \rightarrow b, t, (f * v), d \rightarrow b, t, l, d$

$d = 1024$

$l = 64$

Do not have video modality
in OpenFlamingo



OpenFlamingo :

Perceiver

$b, t, f, v, d \rightarrow b, t, (f * v), d \rightarrow b, t, l, d$

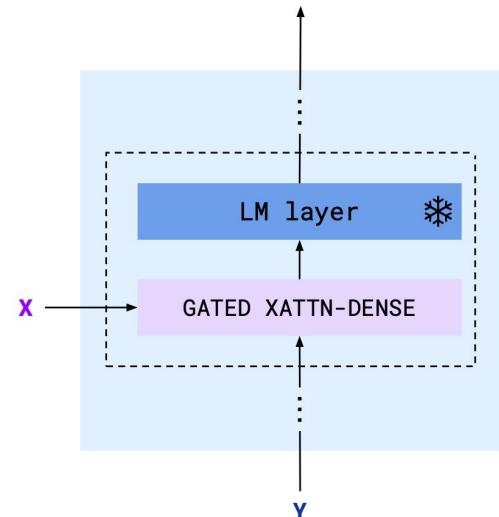
$d = 1024$

$l = 64$

batch size	b
image examples	t
video frames	f
visual tokens	v
embed dim	d

OpenFlamingo: Feature Fusion

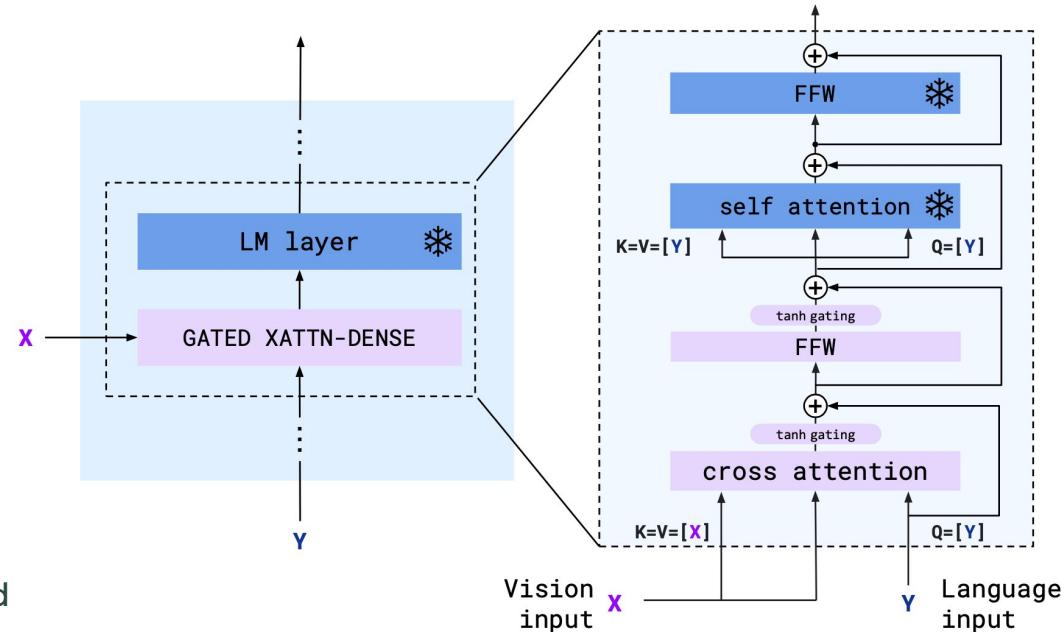
1. **freeze** the pretrained LM blocks
2. insert **gated cross-attention dense** blocks between the original layers
3. keep layers gated to keep LM intact at initialization
4. **queries** = LM inputs



OpenFlamingo: Feature Fusion

1. **freeze** the pretrained LM blocks
2. **insert gated cross-attention dense blocks** between the original layers
3. keep layers gated to keep LM intact at initialization
4. **queries** = LM inputs

tanh-gating mechanism –
multiples output of newly initialized
layer by $\tanh(\alpha)$



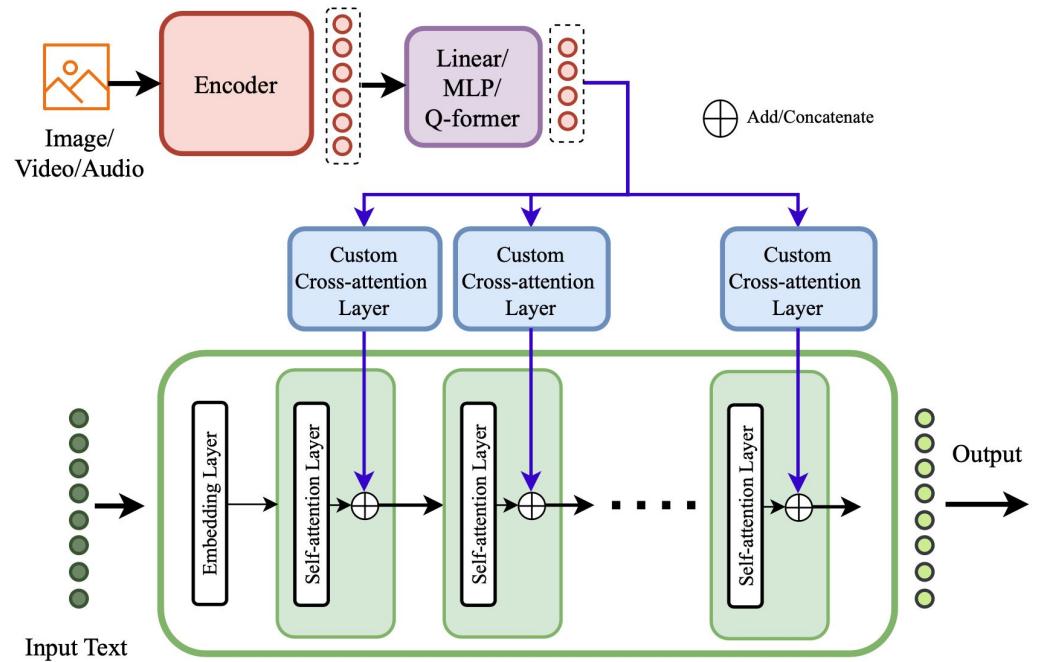
1.2

Deep Fusion:

Custom Layers Deep Fusion
(CL-DF)

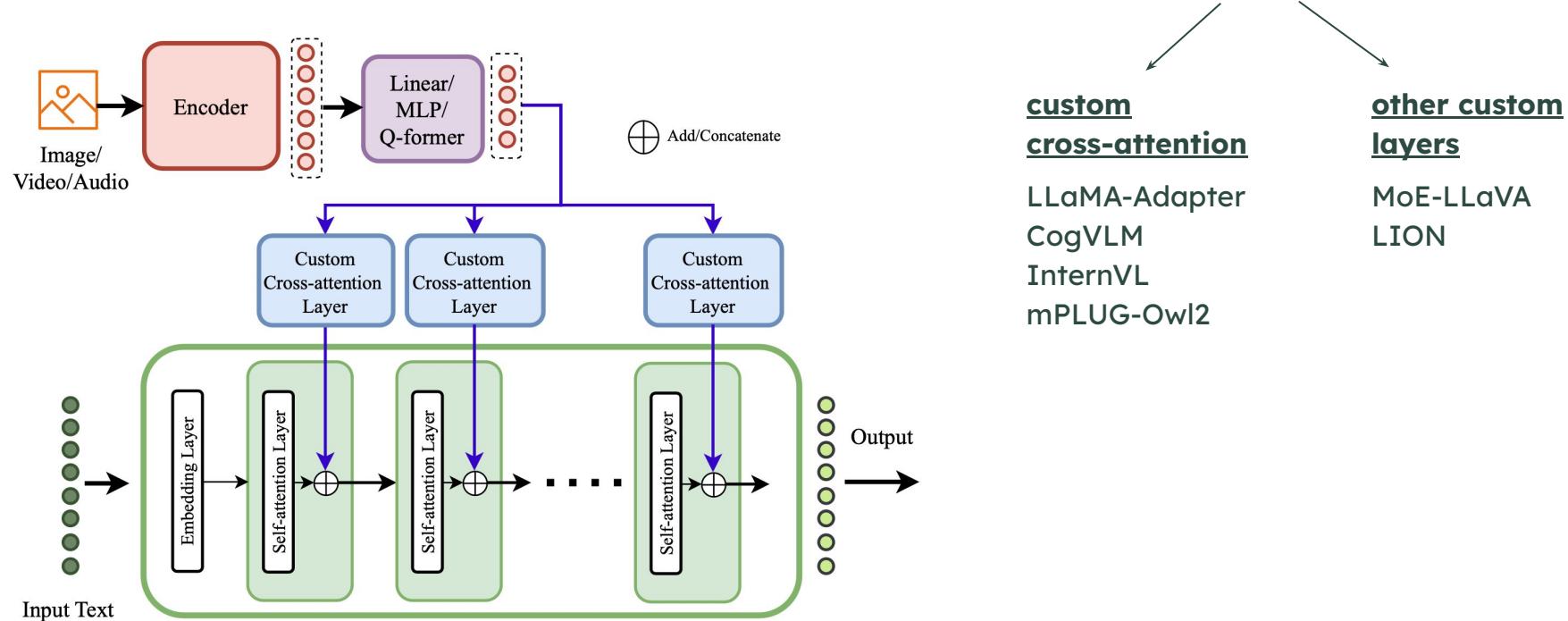
CL-DF: Custom Layers

Input modalities are deeply fused into the **internal layers** of the LLM using **custom-designed layers**



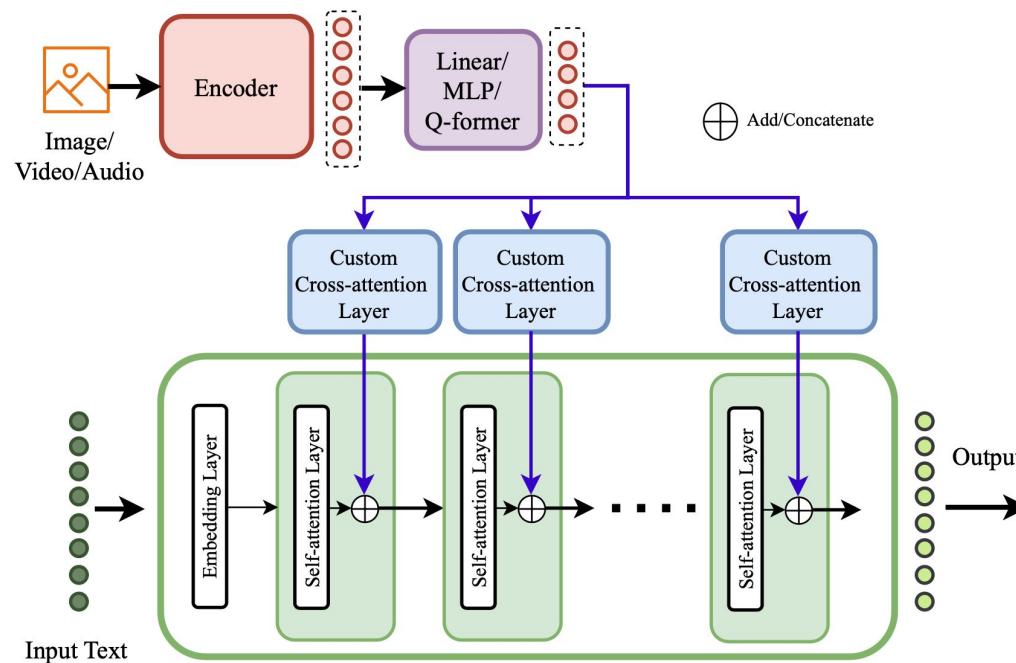
CL-DF: Custom Layers

Input modalities are deeply fused into the **internal layers of the LLM** using **custom-designed layers**



CL-DF: Custom Layers

Input modalities are deeply fused into the **internal layers of the LLM** using **custom-designed layers**



custom
cross-attention

LLaMA-Adapter
CogVLM
InternVL
mPLUG-Owl2

other custom
layers

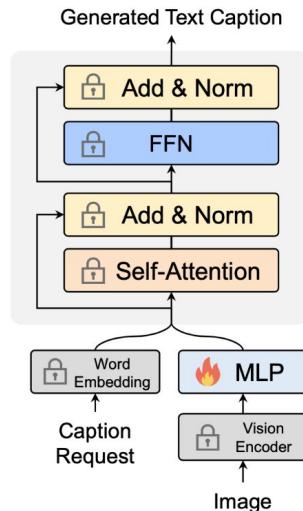
MoE-LLaVA
LION

CL-DF: MoE-LLaVA (Dec 2024)

LLaVA - by Microsoft, **MoE-LLaVA** - Peking University: Mixture-of-Experts layer

Stage 1

adapt visual tokens

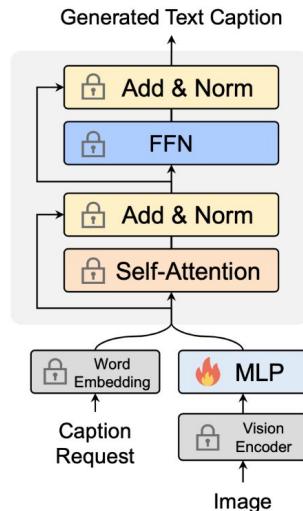


CL-DF: MoE-LLaVA (Dec 2024)

LLaVA - by Microsoft, **MoE-LLaVA** - Peking University: Mixture-of-Experts layer

Stage 1

adapt visual tokens



vision model

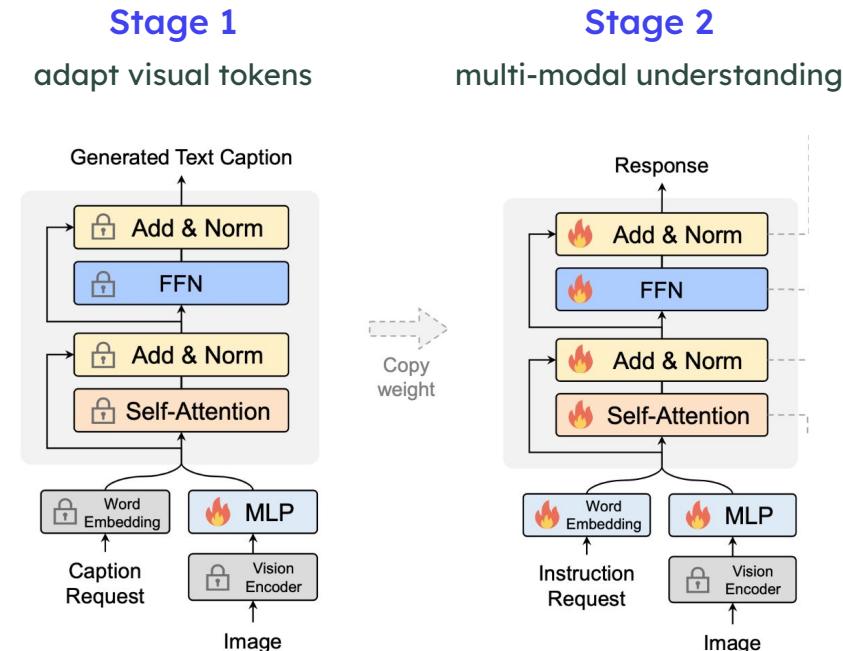
CLIP-Large
(following LLaVA-1.5)

language model

LLaMA / Vicuna /Qwen...

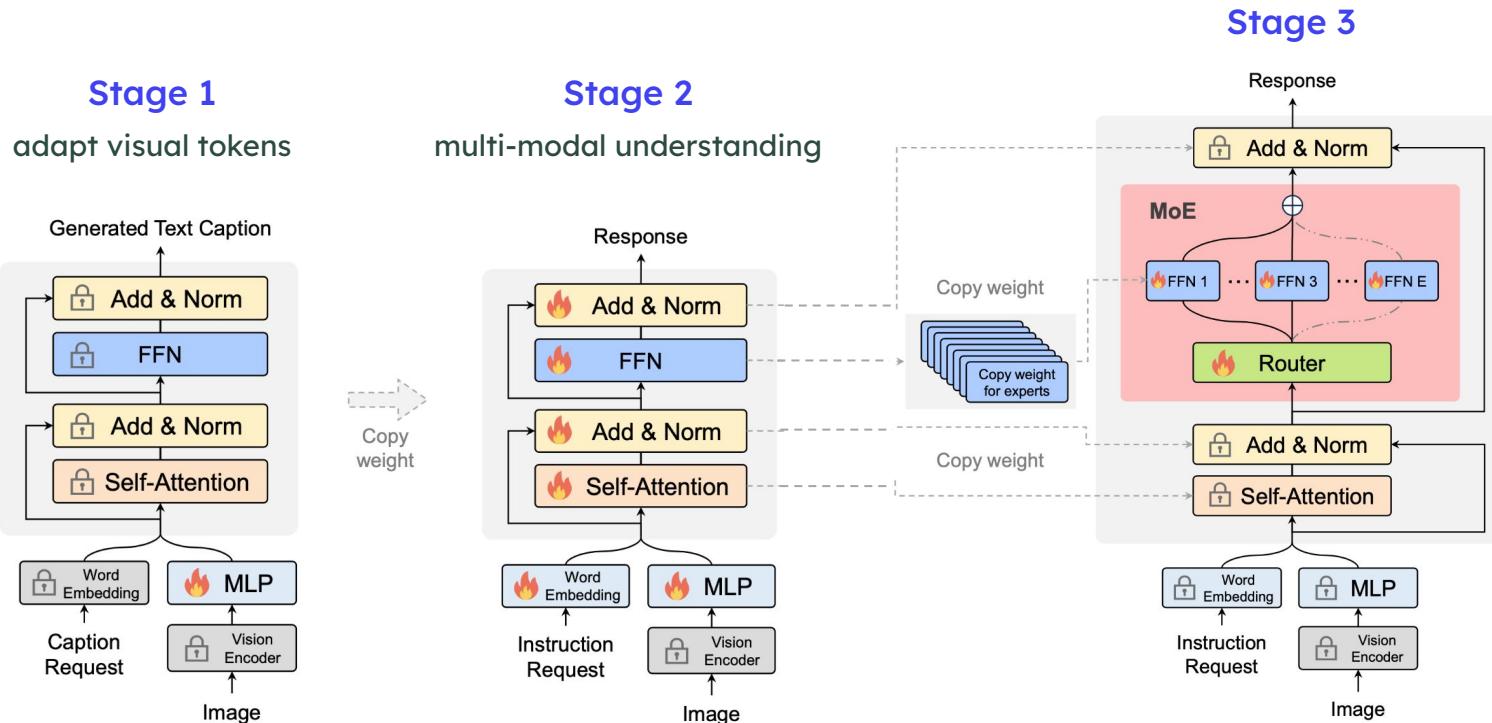
CL-DF: MoE-LLaVA (Dec 2024)

LLaVA - by Microsoft, **MoE-LLaVA** - Peking University: Mixture-of-Experts layer



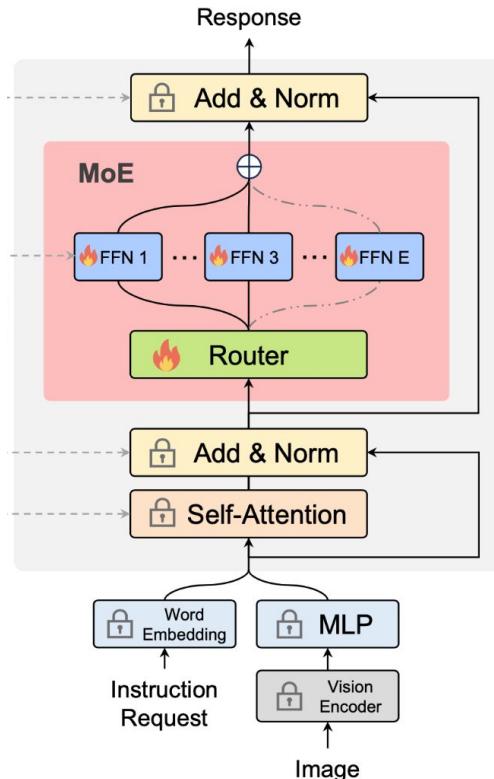
CL-DF: MoE-LLaVA (Dec 2024)

LLaVA - by Microsoft, **MoE-LLaVA** - Peking University: Mixture-of-Experts layer



many LLaMAs!

MoE-LLaVA: Router



1

have E experts, each expert = FFN

$$\mathcal{E} = [e_1, e_2, \dots, e_E]$$

2

router = linear layer that assigns probabilities to experts

$$\mathcal{P}(\mathbf{x})_i = \frac{e^{f(\mathbf{x})_i}}{\sum_j^E e^{f(\mathbf{x})_j}}$$

3

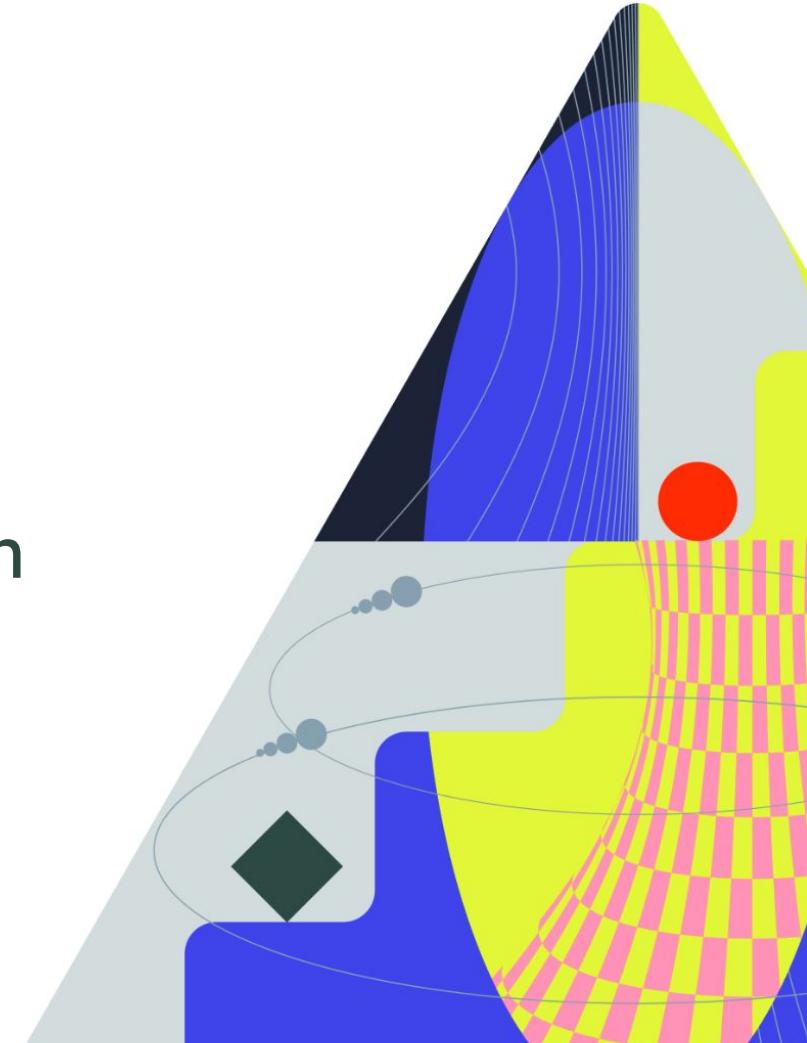
calculate weighted sum

$$\text{MoE}(\mathbf{x}) = \sum_{i=1}^k \mathcal{P}(\mathbf{x})_i \cdot \mathcal{E}(\mathbf{x})_i$$

2.1

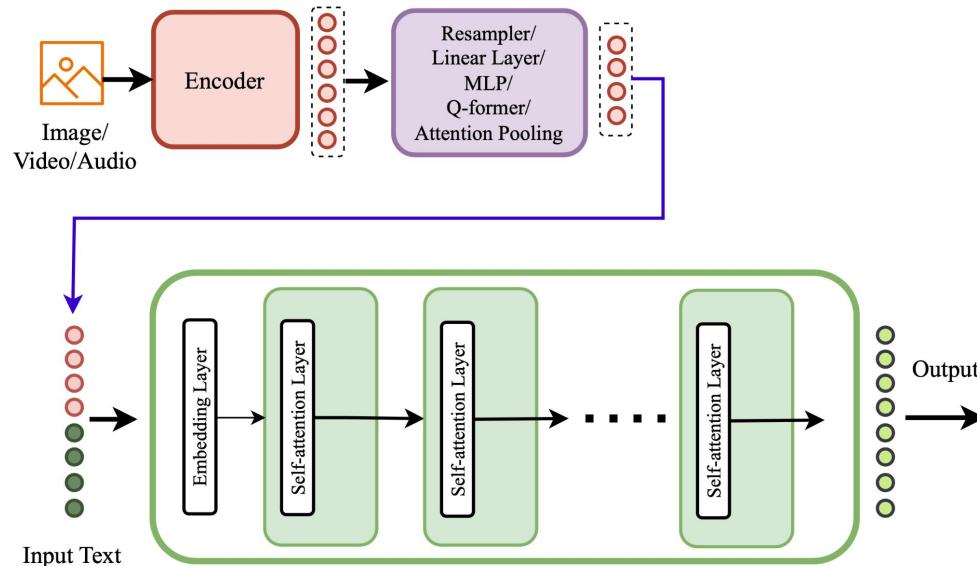
Early Fusion:

Non-Tokenized Early Fusion (NT-EF)



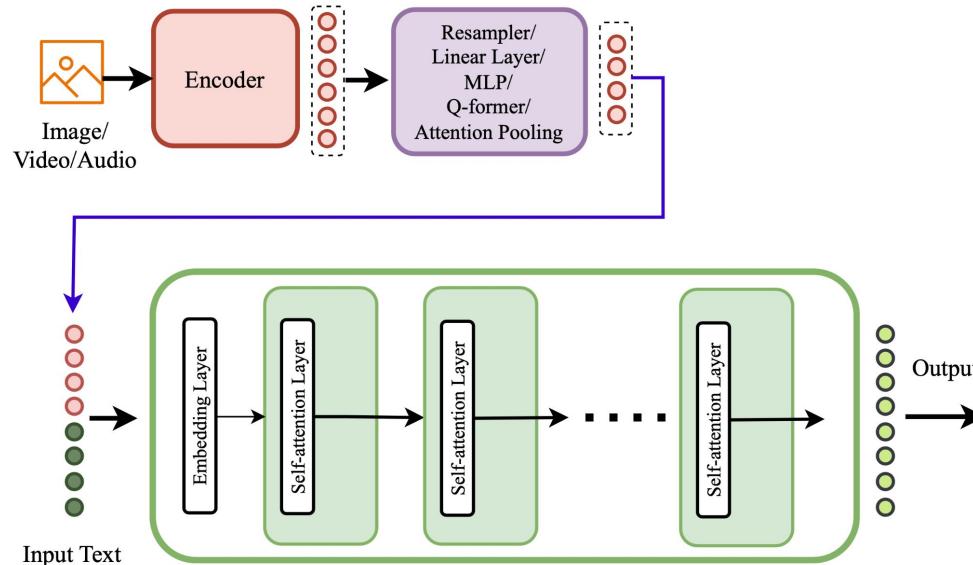
NT-EF: Non-Tokenized

Non-tokenized input modalities are **directly fed to the model** rather than to internal layers



NT-EF: Non-Tokenized

Non-tokenized input modalities are **directly fed to the model** rather than to internal layers



→ **Q-Former:** BLIP-2 🏆, MiniGPT-v2

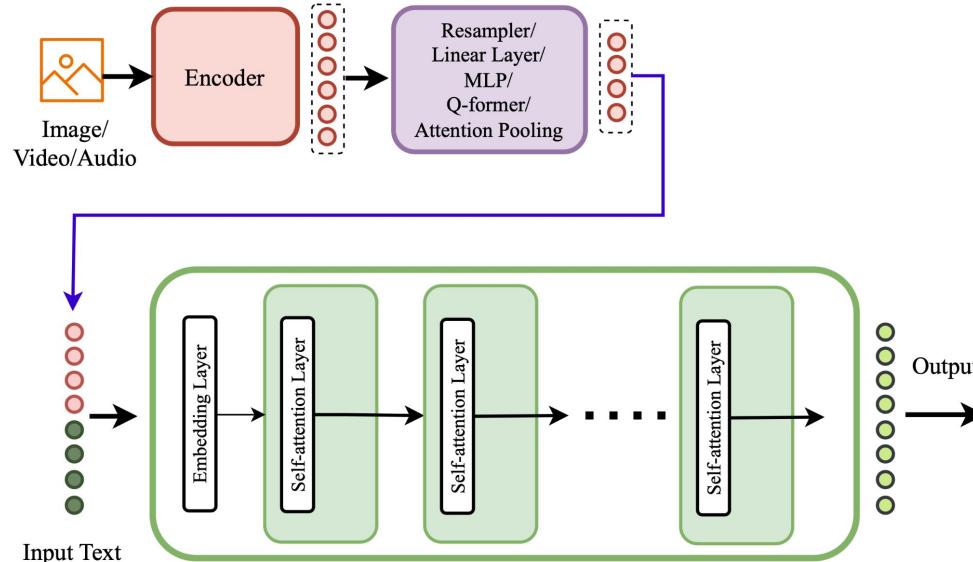
→ **Custom layer:** Qwen-VL, AnyMAL, Video-ChatGPT, EmbodiedGPT

→ **Linear / MLP:** DeepSeek-VL, LLaVA, LLaVA-NeXT, PaLM-E, Shikra

→ **Perceiver resampler:** Monkey, V*, Kosmos-G

NT-EF: Non-Tokenized

Non-tokenized input modalities are **directly fed to the model** rather than to internal layers



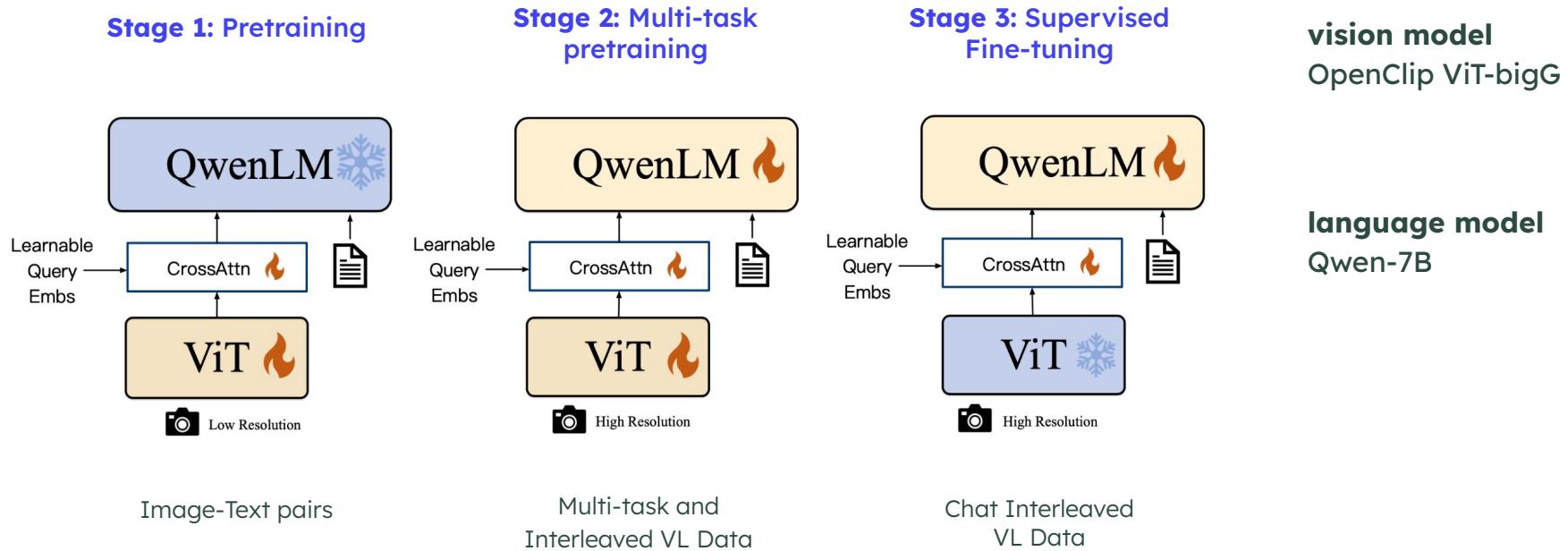
→ **Q-Former:** BLIP-2 🏆, MiniGPT-v2

→ **Custom layer:** Qwen-VL, AnyMAL, Video-ChatGPT, EmbodiedGPT

→ **Linear / MLP:** DeepSeek-VL, LLaVA, LLaVA-NeXT, PaLM-E, Shikra

→ **Perceiver resampler:** Monkey, V*, Kosmos-G

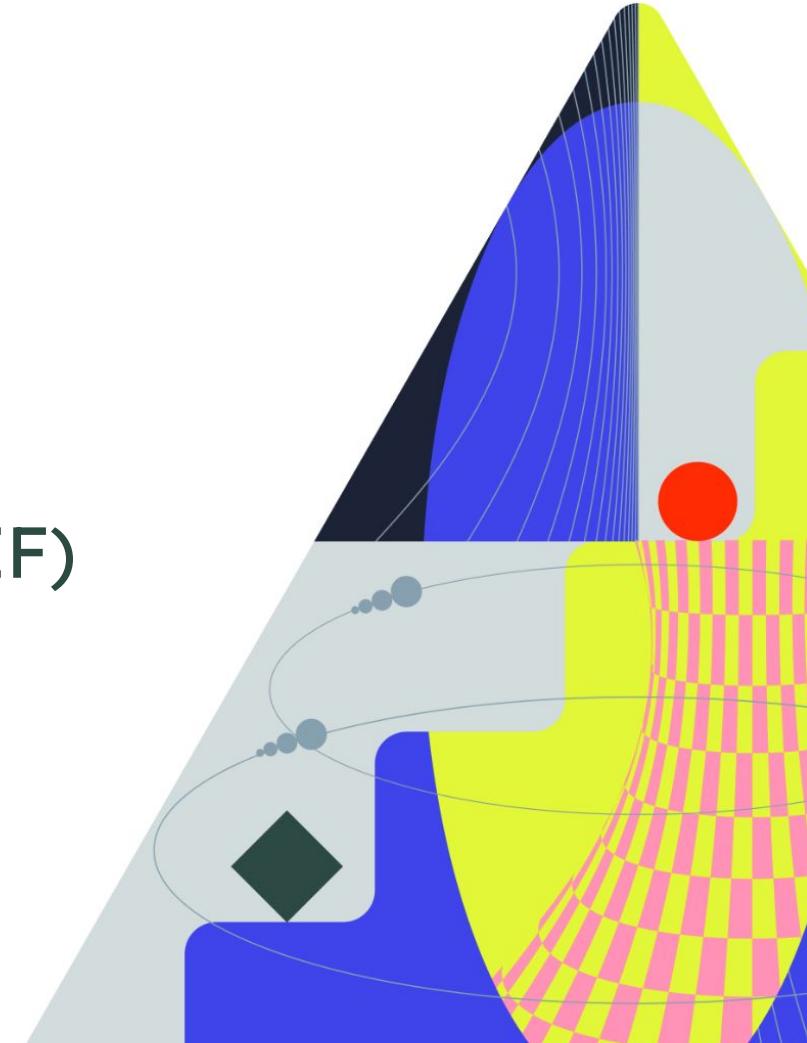
NT-EF: **Qwen-VL** (Oct 2023)



2.2

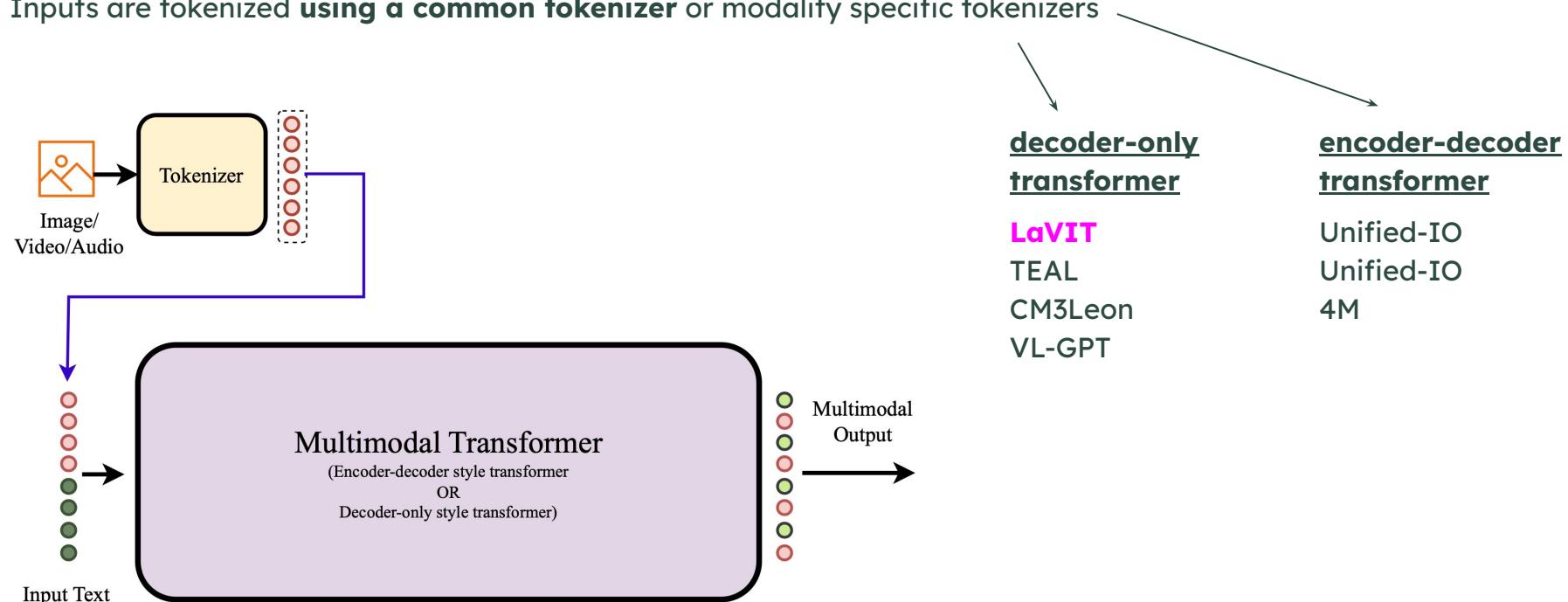
Early Fusion:

Tokenized Early Fusion (T-EF)

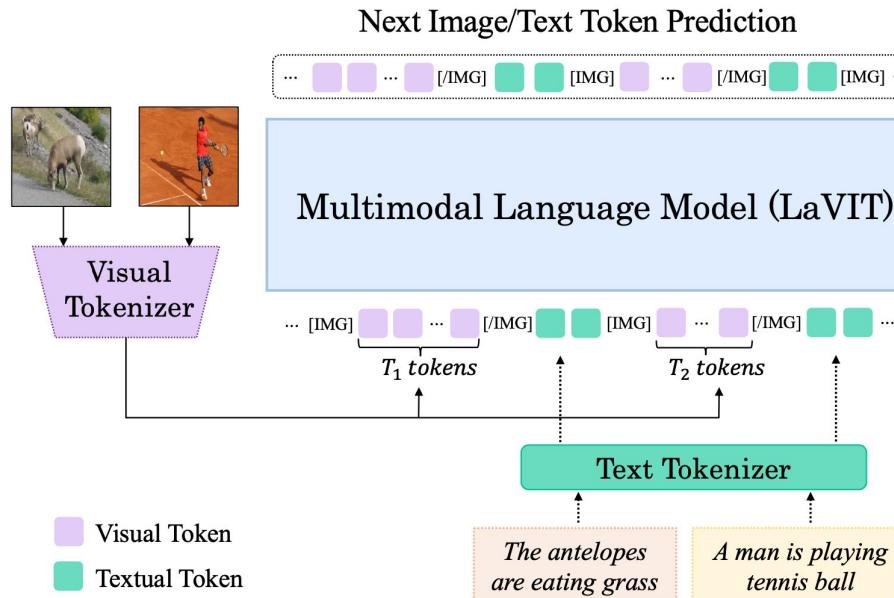


T-EF: Tokenized

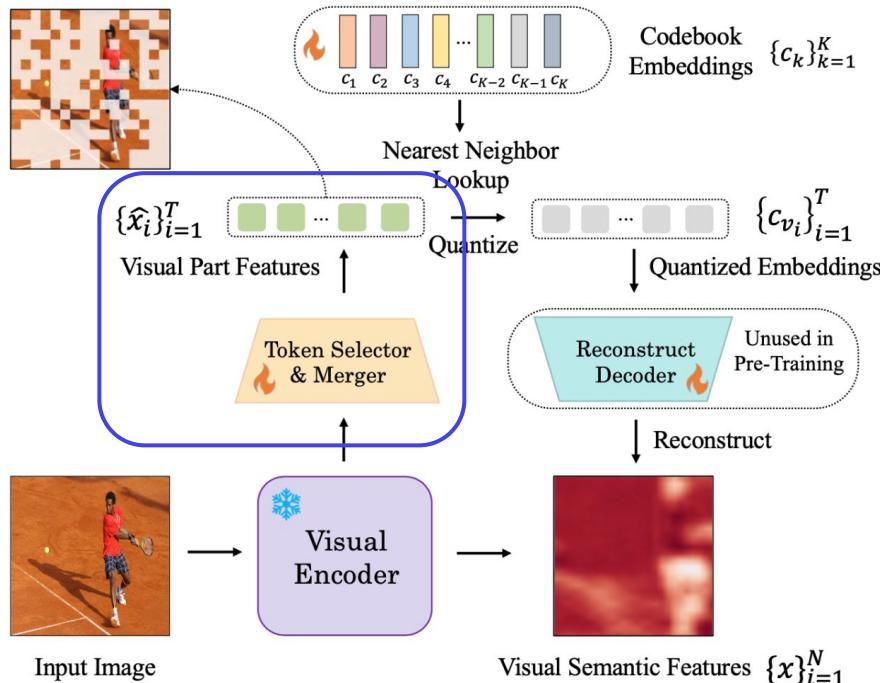
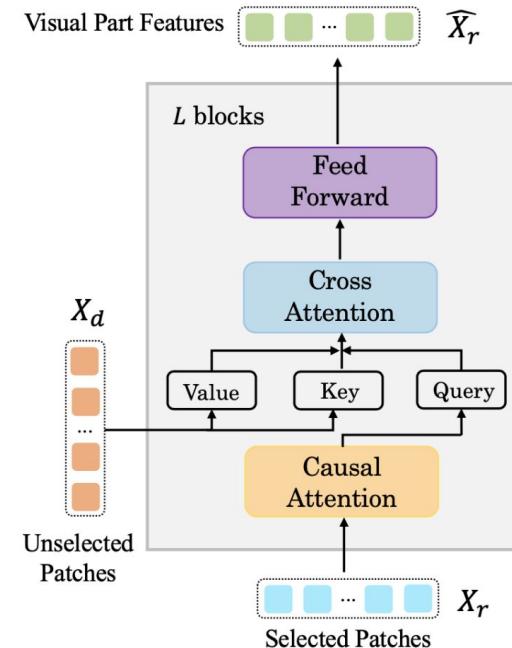
Inputs are tokenized **using a common tokenizer** or modality specific tokenizers



T-EF: LaVIT (Mar 2024)

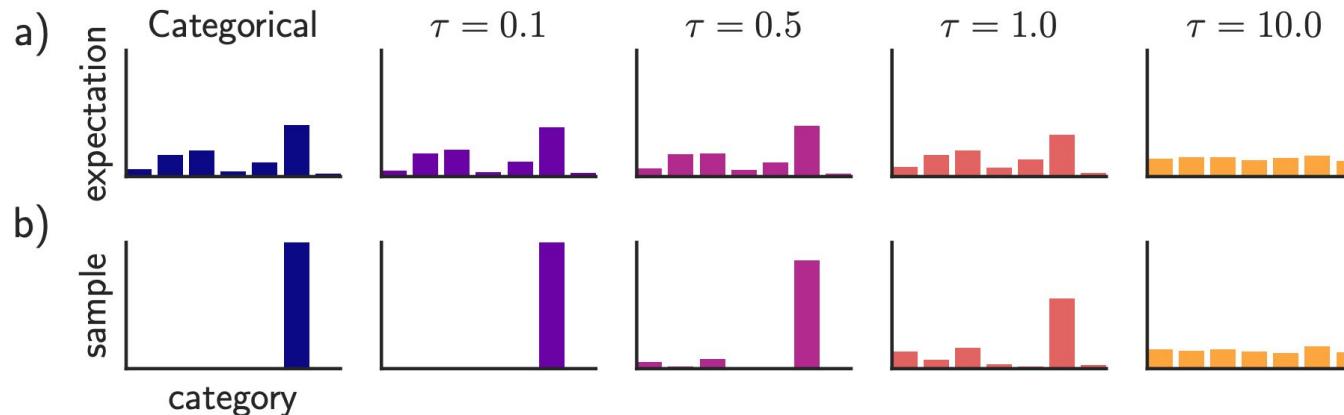


T-EF: LaVIT (Mar 2024)



T-EF: LaVIT (Mar 2024)

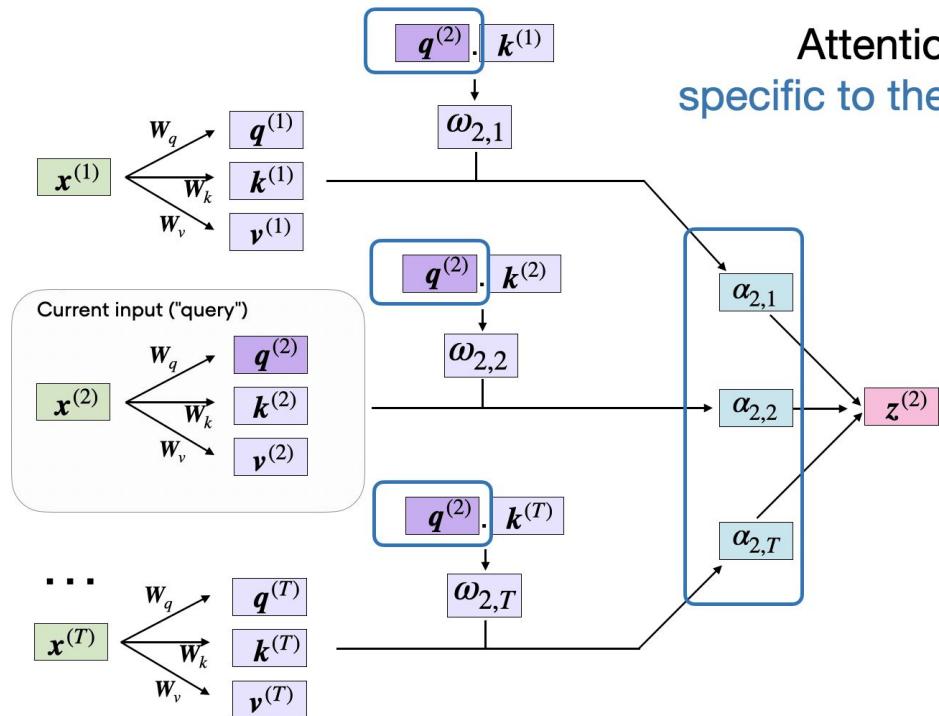
$$\hat{\pi}_{i,j} = \frac{\exp((\log \pi_{i,j} + G_{i,j})/\tau)}{\sum_{r=1}^2 \exp((\log \pi_{i,r} + G_{i,r})/\tau)}$$



Conclusions

- 1 Classified multimodal models: **Deep & Early Fusion**
- 2 Focused on **VLM models**: Image + Text → Text
- 3 Investigated carefully **Flamingo**, **MoE-LLaVA**, **Qwen-VL**, and **LaVIT** models

Appendix: Self-Attention

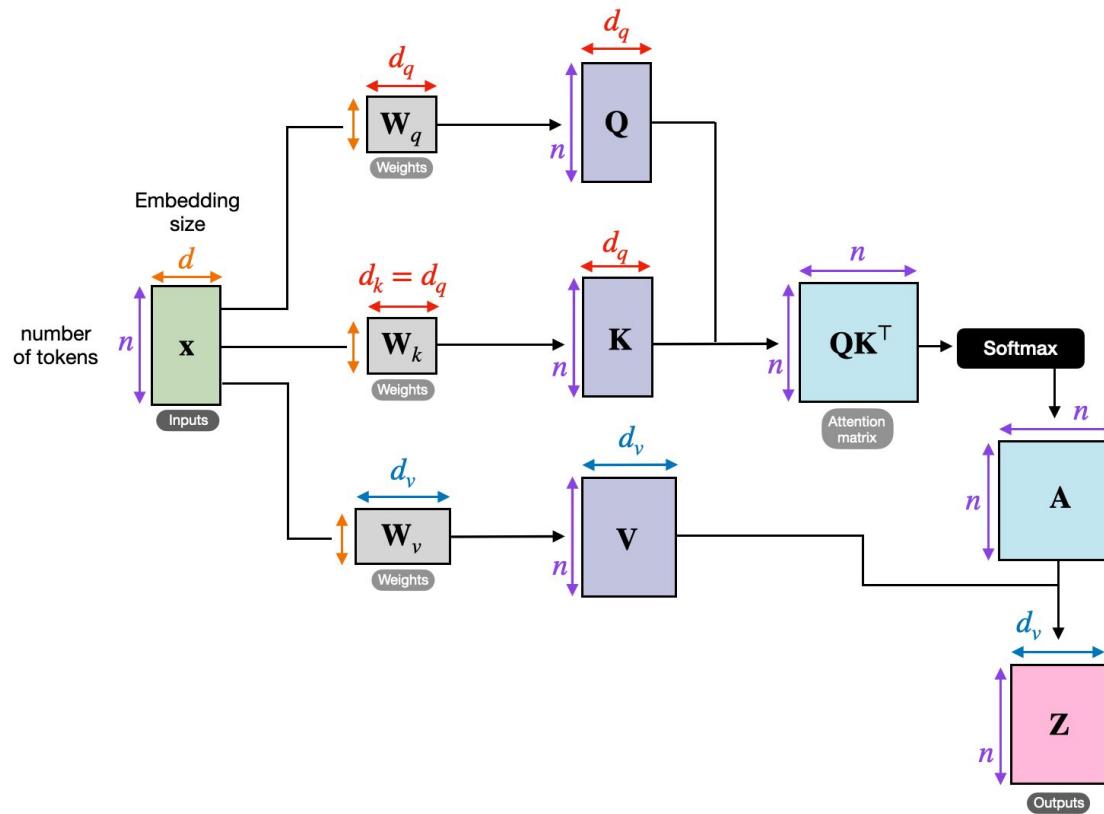


Attention weights are specific to the current input token

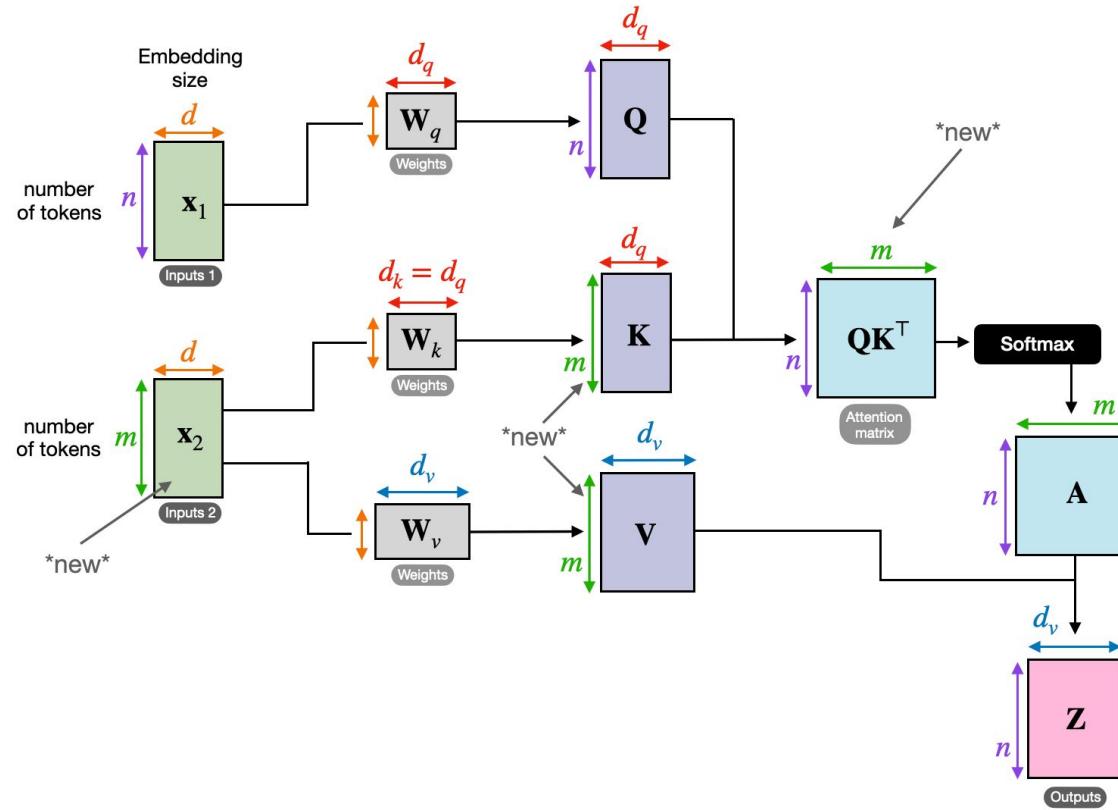
$$\text{where } z^{(2)} = \sum_{j=1}^T \alpha_{2,j} v^{(j)}$$

$$\text{where } \alpha_2 = \text{softmax} \left(\frac{\omega_2}{\sqrt{d_k}} \right)$$

Appendix: **Self-Attention**



Appendix: Cross-Attention



MoE-LLaVA: Router

