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Introduction Vi

Focus on VLM models: Image + Text — Text

Classify multimodal models at a high level

Explore code & architecture of the most vivid exemplars

H N N =

Investigate general approaches applicable to other models
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High-level Classification Vi

Multimodal models can be classified in 2 main types (4 subtypes)
based on the fusion of input modalities

1. Deep Fusion 2. Early Fusion
deeply fuses multimodal inputs multimodal inputs are fed to the
within internal layers model rather to its internals

Shakti N. Wadekar et al. The Evolution of Multimodal Model Architectures. 28 May 2024.


https://arxiv.org/search/cs?searchtype=author&query=Wadekar,+S+N
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Multimodal models can be classified in 2 main types (4 subtypes)

based on the fusion of input modalities

1. Deep Fusion

deeply fuses multimodal inputs
within internal layers

.

1.1. Standard 1.2. Custom
Cross-Attention Layers (CL-DF)
(SC-DF)

Shakti N. Wadekar et al. The Evolution of Multimodal Model Architectures. 28 May 2024.

2. Early Fusion

multimodal inputs are fed to the
model rather to its internals

N

2.1. Non-tokenized 2.2. Tokenized
(NT-EF) (T-EF)


https://arxiv.org/search/cs?searchtype=author&query=Wadekar,+S+N
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Deep Fusion:

Standard Cross-Attention
Deep Fusion (SC-DF)
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SC-DF: Standard Cross-Attention S

Input modalities are deeply fused into the internal layers of the LLM using standard cross-attention layer
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Input modalities are deeply fused into the internal layers of the LLM using standard cross-attention layer
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Input modalities are deeply fused into the internal layers of the LLM using standard cross-attention layer
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SC-DF: Standard Cross-Attention
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Input modalities are deeply fused into the internal layers of the LLM using standard cross-attention layer
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SC-DF: OpenFlamingo (Nov 2022) Vi

[ | Output: text o o
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This is a very cute dog.ﬂ This is

OpenFlamingo follows Flamingo architecture
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OpenFlamingo: Feature Fusion vy

1. freeze the pretrained LM blocks

2. insert gated cross-attention l
dense blocks between the :
original layers

3. keep leyers gated to keep LM T

intact at initialization
X ———  GATED XATTN-DENSE

4. queries = LM inputs e } ______________



OpenFlamingo: Feature Fusion

1. freeze the pretrained LM blocks

2. insert gated cross-attention
dense blocks between the
original layers

3. keep leyers gated to keep LM
intact at initialization

4. queries = LM inputs

tanh-gating mechanism —
multiples output of newly initialized
layer by tanh()

!
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1.2

Deep Fusion:

Custom Layers Deep Fusion
(CL-DF)
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Input modalities are deeply fused into the internal layers of the LLM using custom-designed layers
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Input modalities are deeply fused into the internal layers of the LLM using custom-designed layers
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CL-DF: Custom Layers MLLMe

Input modalities are deeply fused into the internal layers of the LLM using custom-designed layers
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LLaVA - by Microsoft, MoE-LLaVA - Peking University: Mixture-of-Experts layer
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LLaVA - by Microsoft, MoE-LLaVA - Peking University: Mixture-of-Experts layer

Stage 1

adapt visual tokens

Generated Text Caption
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LLaVA - by Microsoft, MoE-LLaVA - Peking University: Mixture-of-Experts layer
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CL-DF: MoE-LLaVA (Dec 2024) MLLMs

LLaVA - by Microsoft, MoE-LLaVA - Peking University: Mixture-of-Experts layer
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Early Fusion:

Non-Tokenized Early Fusion
(NT-EF)
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NT-EF: Non-Tokenized Sl

Non-tokenized input modalities are directly fed to the model rather than to internal layers
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NT-EF: Non-Tokenized Sl

Non-tokenized input modalities are directly fed to the model rather than to internal layers
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Non-tokenized input modalities are directly fed to the model rather than to internal layers
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NT-EF: Qwen=-VL (Oct 2023)

Stage 1: Pretraining Stage 2: Multi-task Stage 3: Supervised
pretraining Fine-tuning
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2.2

Early Fusion:
Tokenized Early Fusion (T-EF)




T-EF: Tokenized

Inputs are tokenized using a common tokenizer or modality specific tokenizers

AN
Image/
Video/Audio

Tokenizer

1000000;

00000000 €—

Input Text

Multimodal Transformer
(Encoder-decoder style transformer
OR
Decoder-only style transformer)

Multimodal
Output

00000000

decoder-onl
transformer

LaVIT
TEAL
CM3Leon
VL-GPT

Seminar1 14

encoder-decoder
transformer

Unified-I0
Unified-I0
4M



T-EF: LaVIT (Mar 2024)

Next Image/Text Token Prediction
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Multimodal Language Model (LaVIT)

~ Visual
Tokenlzer;_.-’ - [IMG] w [/IMG] OMG] - [/IMG]
................................................
T, tokens T, tokens :
[ Text Tokenizer J
' '
Visual Token i i
The antelopes A man is playing
Textual Token are eating grass tennis ball

Seminar1
Introduction to
MLLMs

15



T-EF: LaVIT (Mar 2024)
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T-EF: LaVIT (Mar 2024) MLLMs
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Conclusions S

1 Classified multimodal models: Deep & Early Fusion
2 Focused on VLM models: Image + Text — Text

3 Investigated carefully Flamingo, MoE-LLaVA, Qwen-VL, and
LaVIT models
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Appendix: Self-Attention
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Appendix: self-Attention Introduction to
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