

VLMs in Embodied AI

Vlad Shakhuro

AIRI, FusionBrain.Robotics

Outline

- 01 What is Embodied AI?
- 02 Evaluation: sim and real
- 03 Understanding the world
- 04 Planning
- 05 Acting: manipulation
- 06 Acting: navigation
- 07 Reward function
- 08 Open questions

01

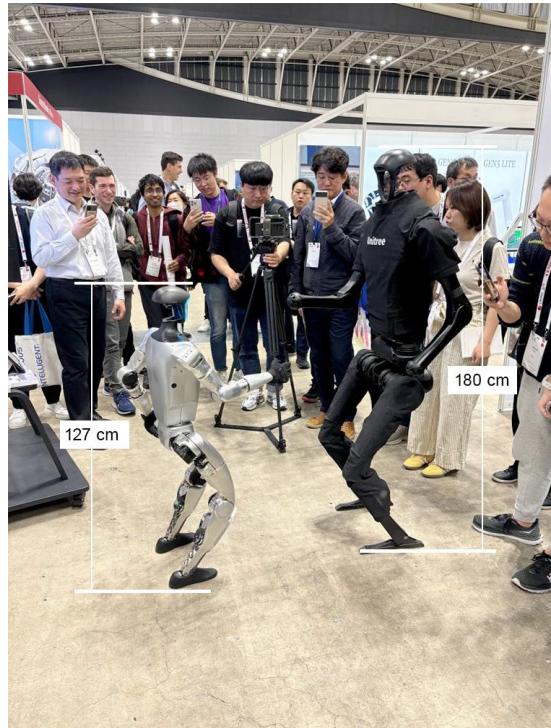
What is Embodied AI?

Embodied AI

Goal of EAI is to create intelligent agents (i.e. robots) with physical **embodiment** that can solve challenging tasks. Such agents should be able to:

- **Perceive:** see, listen, touch their environment using various sensors and extract meaningful information
- **Talk:** hold a natural dialog grounded in their environment
- **Reason:** consider and plan for the long-term consequences of their actions
- **Act:** navigate and interact with their environment to accomplish goals

General-purpose robots



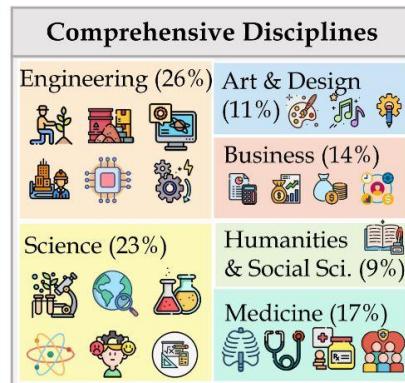
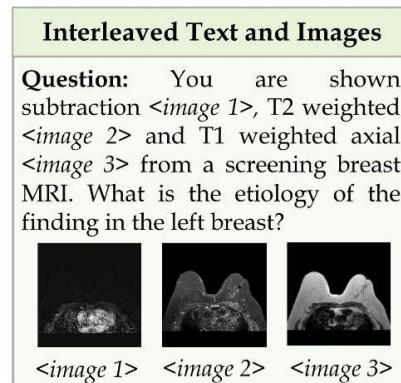
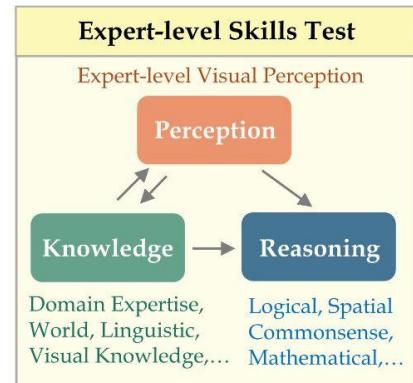
02

Evaluation: sim and real

Static benchmarks for CV/NLP

A lot of CV/NLP benchmarks are available for various tasks:

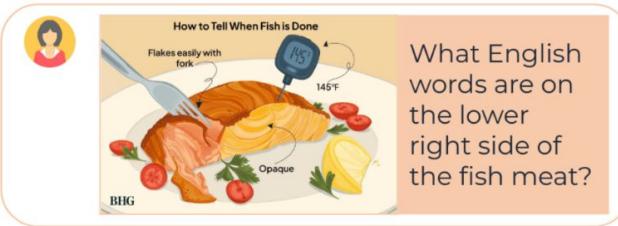
- usually very fast evaluation
- reproducible
- cheap
- have big domain shift in relation to robotics data
- may be only a proxy metric/guidance for choosing baseline models



Arena for evaluating VLLMs

Rules

- Chat with two anonymous models
- Continue to chat until you identify a winner
- Vote for the better one with reason



Model A
On the lower right side of the cooked fish, the word "Opaque" is labeled.

Model B
The English word on the lower right side of the fish meat is "Opaque."

Reason Both Model A and Model B answer correctly regarding the text.

Vote A is Better B is Better Tie Both are bad

Model A: Claude-3-Sonnet, Model B: GPT-4V

WVArena Elo Ratings

Submit

WV Bench Scores

Judge
GPT-4o
Both models are correct

Reference
Claude-3-Sonnet

Bench Data

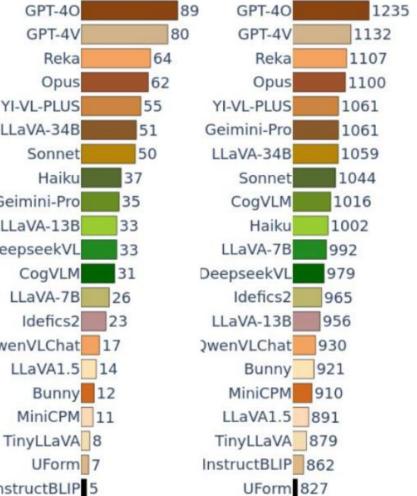
500 sample

Sample Criteria

- Safety
- Diversity

Arena Data

20k+ chat 8k+ vote



WildVision Bench

WildVision Arena

WVArena 0.94 0.86 0.79 0.79 0.77

WVbench MMVet MMMU MMStar AI2D

Correlation w. WVArena Leaderboard

Simulator: static scans vs CAD

Scan-based env:

- relatively fast to collect
- realistic look
- very fast to render
- limited number of supported tasks

CAD-based env:

- hard to prepare
- realistic look requires a lot of effort
- may be challenging to render
- all tasks are supported

Simulator: world model

World model is a special case of simulators.
Usually these models allow to obtain sensor
data conditioned on actions and additional
input

Real-world evaluation

- the only evaluation that really matters
- very slow
- very expensive and technically complex
- scales badly

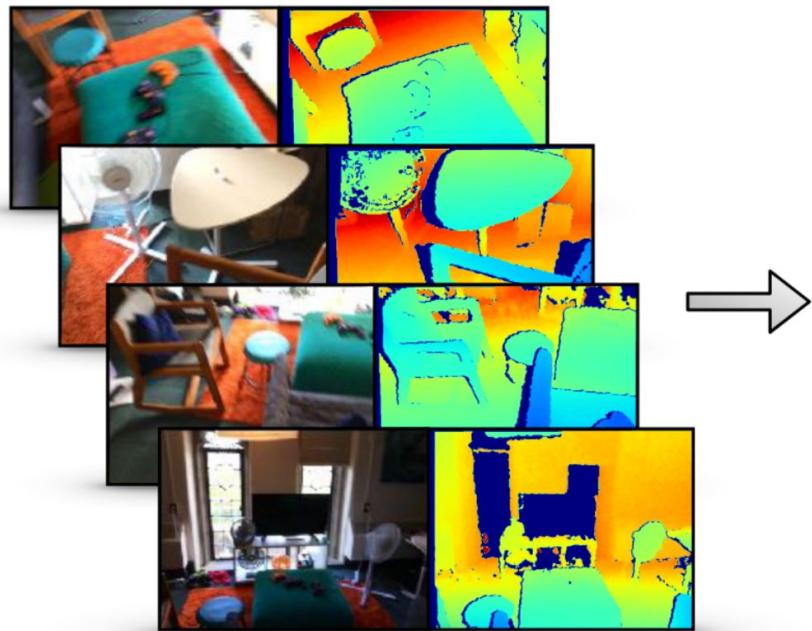
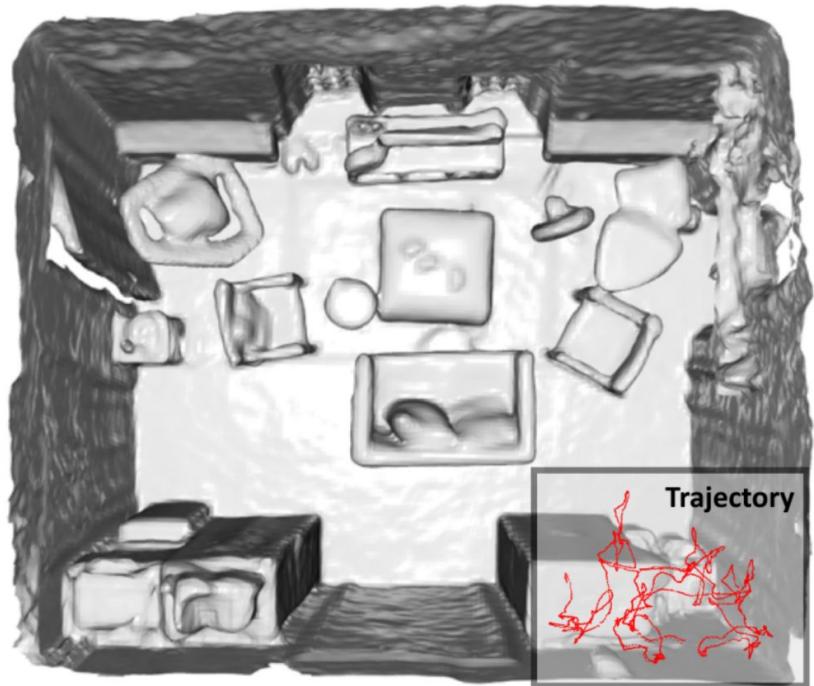
Comparison of evaluation methods

	Static benchmarks	Arena	End-to-end sim	End-to-end real
Relevance	Low	Medium	Medium	High
Safety	High	High	High	Low
Speed	High	Medium	Medium	Low
Cheapness	High	Medium	Medium	Low
Reproducibility	High	High	Medium	Low

03

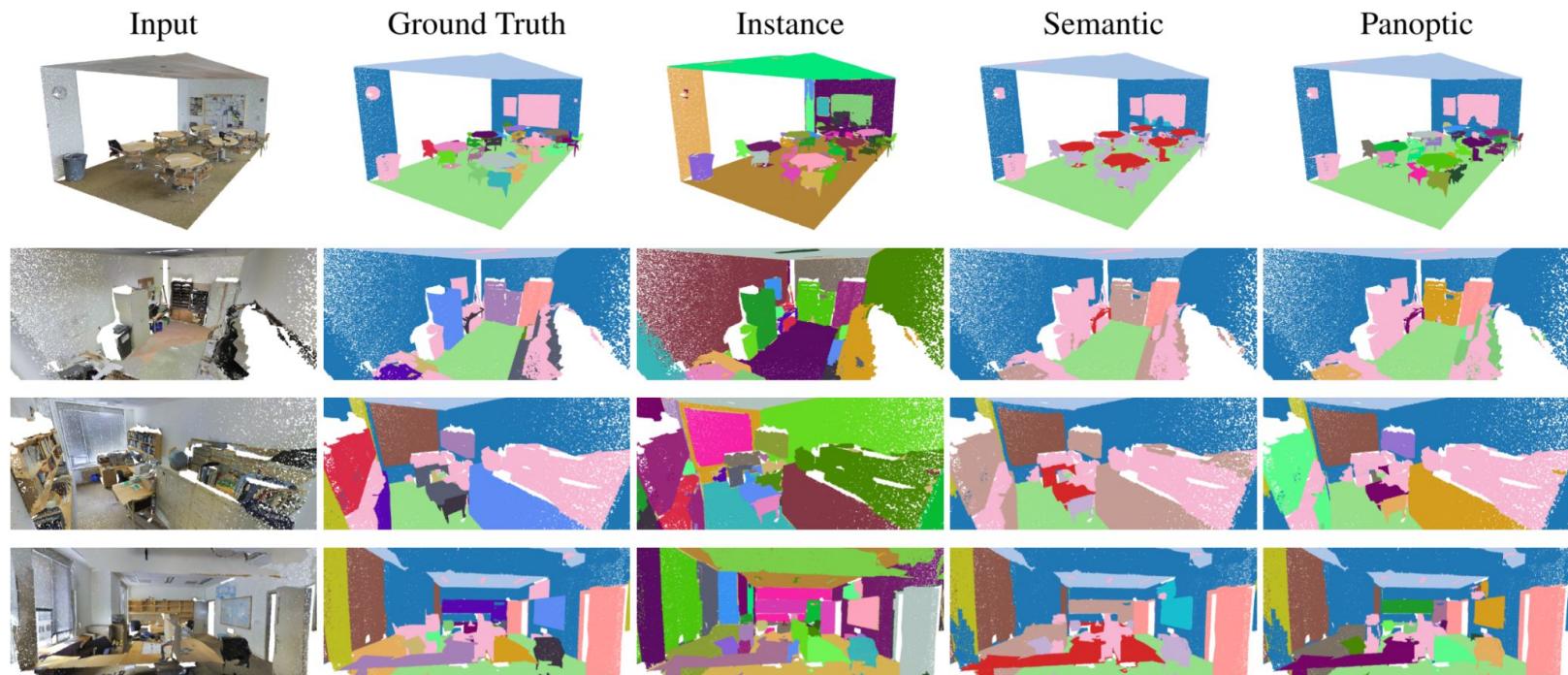
Understanding the world

3D reconstruction (SLAM)



3D segmentation

3D scene representation (i.e. point cloud) is segmented into a fixed set of classes

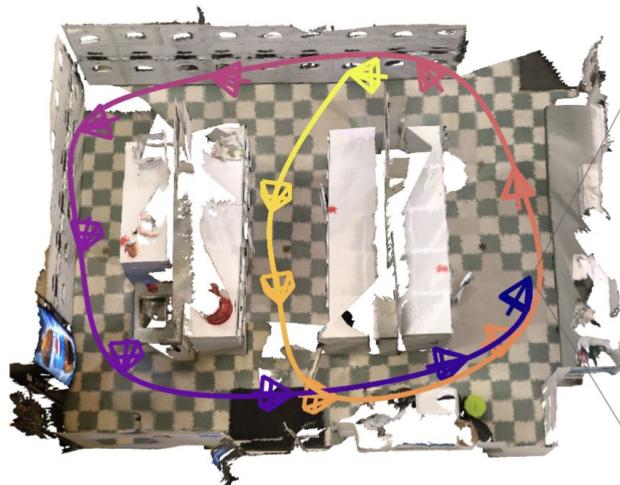


Embodied question answering

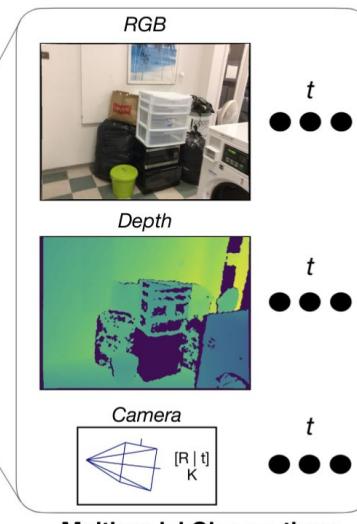
Agent has to answer questions about environment. Two scenarios are possible:

- pre-recorded video stream
- fully interactive mode: agent can freely explore environment

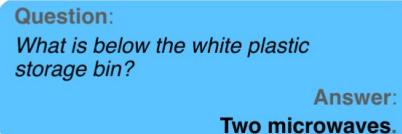
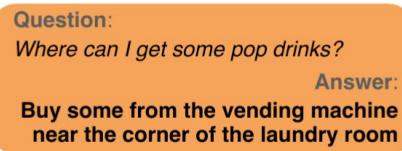
Evaluation of answers is done with GPT-4 or via human evaluation



Environment Trajectory



Multimodal Observations



Open-Vocabulary Q&A

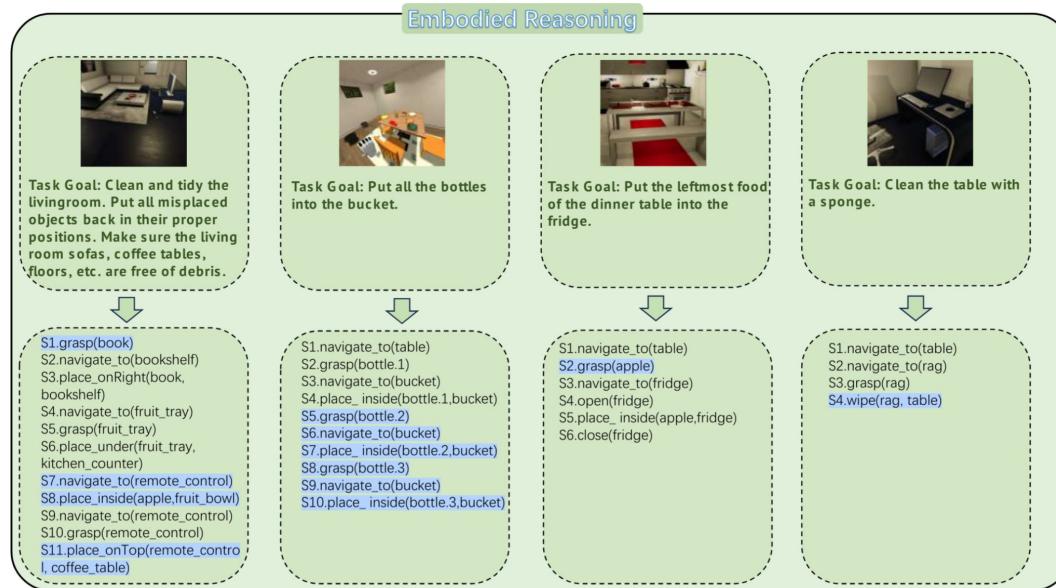
04

Planning

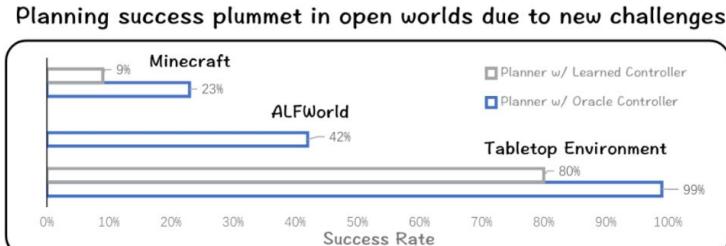
Planning with ground truth

Planning is **decomposing** high-level task into sequence of sub-tasks. Simplest case of planning is planning with ground truth:

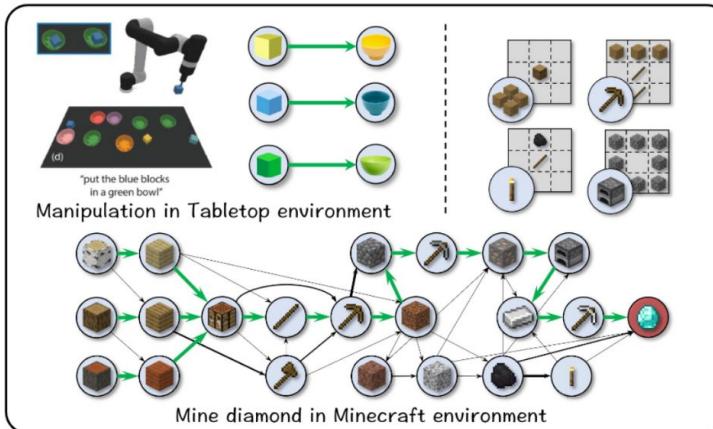
- obtaining ground truth is laborious
- quality may be measured by comparing sequences (accuracy, LCS length or GPT score)



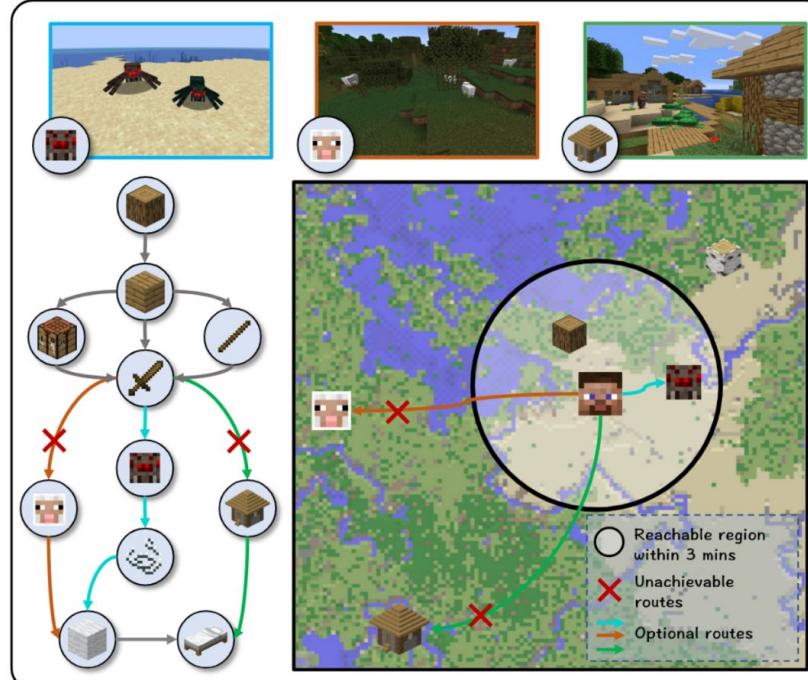
Open-world planning



Challenge #1: Complex Sub-task Dependency



Challenge #2: State-dependent Task Feasibility



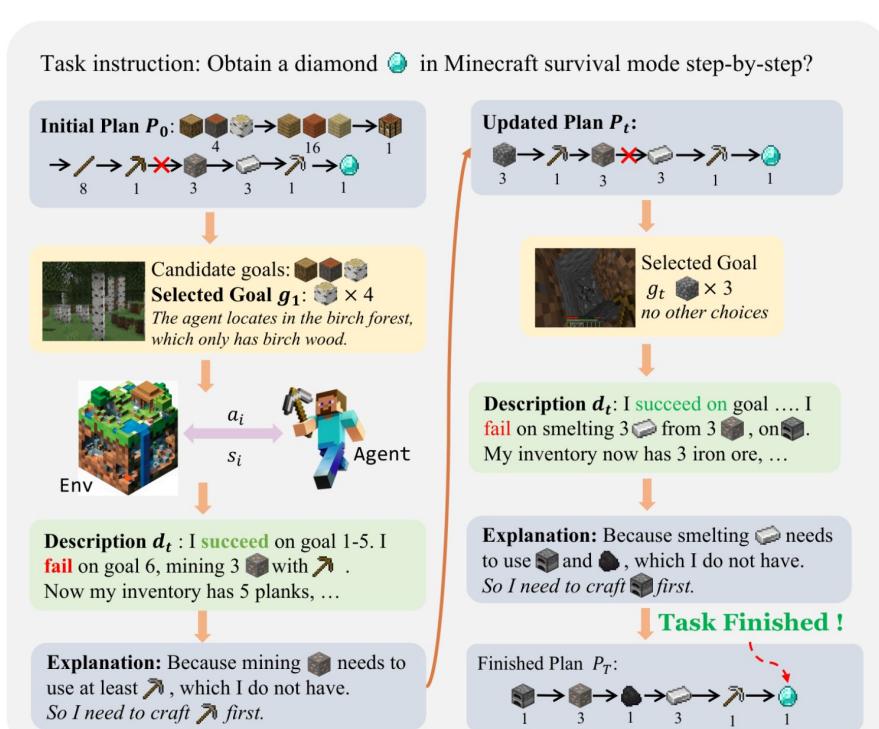
Open-world planning

Two challenges arise in open-world planning:

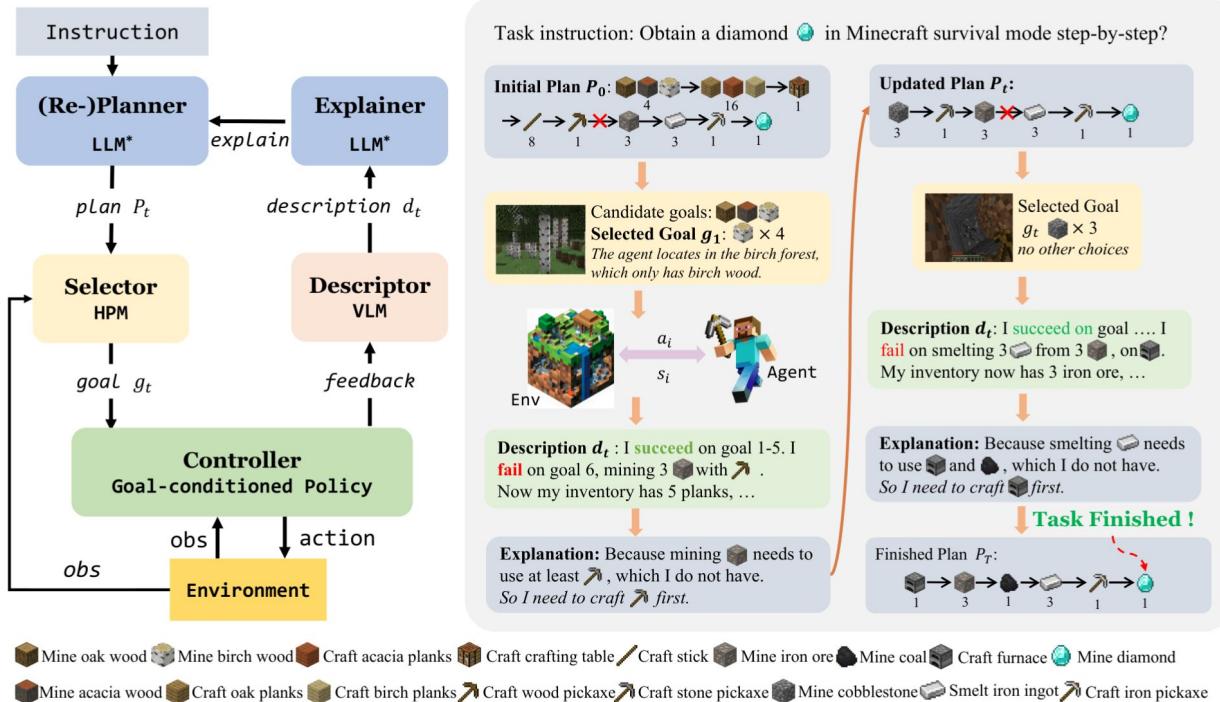
- complex sub-task dependency that may be unknown in advance
- sub-task feasibility depends on the (complex/unobservable) state of the world

Therefore:

- we can't benchmark planning on fixed ground truth sequences, running in simulator and measuring **success rate (SR) is the only option**
- the planning module has to be adaptable and be able to **modify the plan**



Describe, Explain, Plan and Select (DEPS)



Describe, Explain, Plan and Select (DEPS)

Goal: Meat*3
Candidate Skill: Kill Sheep
OR Cow *OR* Pig
Selection: Kill Sheep
Explanation: Meet sheep first.

Goal: Log*2
Candidate Skill: Chop Oak
OR Birch *OR* Acacia Tree
Selection: Chop Acacia Tree
Explanation: Savanna biome only has Acacia tree.

Goal: Coal*1 AND Iron_Ore*1
Candidate Skill: Mine Coal *AND* Iron_Ore
Selection: Mine Iron_Ore
Explanation: Meet iron_ore first.

Goal: Survive in Night.
Candidate Skill: Sleep in bed
OR Dig down.
Selection: Sleep_in_bed
Explanation: Village has beds.

Selector ranks candidate skills according to trained value/affordance function

Describe, Explain, Plan and Select (DEPS)

Meta	Name	Number	Example Task	Max. Steps	Initial Inventory	Given Tool
MT1	Basic	14	Make a wooden door.	3000	Empty	Axe
MT2	Tool (Simple)	12	Make a stone pickaxe.	3000	Empty	Axe
MT3	Hunt and Food	7	Cook the beef.	6000	Empty	Axe
MT4	Dig-Down	6	Mine coal.	3000	Empty	Axe
MT5	Equipment	9	Equip the leather helmet.	6000	Empty	Axe
MT6	Tool (Complex)	7	Make shears and bucket.	6000	Empty	Axe
MT7	IronStage	13	Obtain an iron sword.	6000	Empty	Axe
MT8	Challenge	1	Obtain a diamond!	12000	Empty	Axe

Methods	MT1	MT2	MT3	MT4	MT5	MT6	MT7	MT8	AVG
GPT[16, 32]	25.85±24.8	47.88±31.5	10.78±14.6	7.14±9.0	1.98±5.9	0.0±0.0	0.0±0.0	0.0±0.0	15.42
PP[42]	30.61±23.6	40.09±30.6	17.13±19.1	16.00±17.3	3.21±4.9	0.47±1.3	0.60±2.2	0.0±0.0	16.88
CoT[45]	40.24±30.8	55.21±26.8	6.82±11.6	4.76±8.2	1.73±5.2	0.0±0.0	0.0±0.0	0.0±0.0	18.89
IM[17]	46.89±31.4	53.73±20.8	3.64±6.9	18.41±17.4	4.57±7.4	0.64±1.7	1.02±2.5	0.0±0.0	21.64
CaP[20]	60.08±17.3	60.11±20.24	8.72±9.7	20.33±21.0	2.84±4.6	0.63±1.3	0.60±2.2	0.0±0.0	25.77
DEP	75.70±10.4	66.13±13.4	45.69±16.2	43.35±20.2	15.93±13.9	5.71±3.7	4.60±7.1	0.50±0.5	39.36
DEPS	79.77±8.5	79.46±10.6	62.40±17.9	53.32±29.3	29.24±27.3	13.80±8.0	12.56±13.3	0.59±0.5	48.56

Describe, Explain, Plan and Select (DEPS)

05

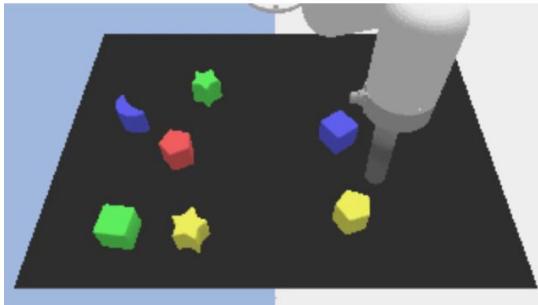
Acting: manipulation

Manipulation

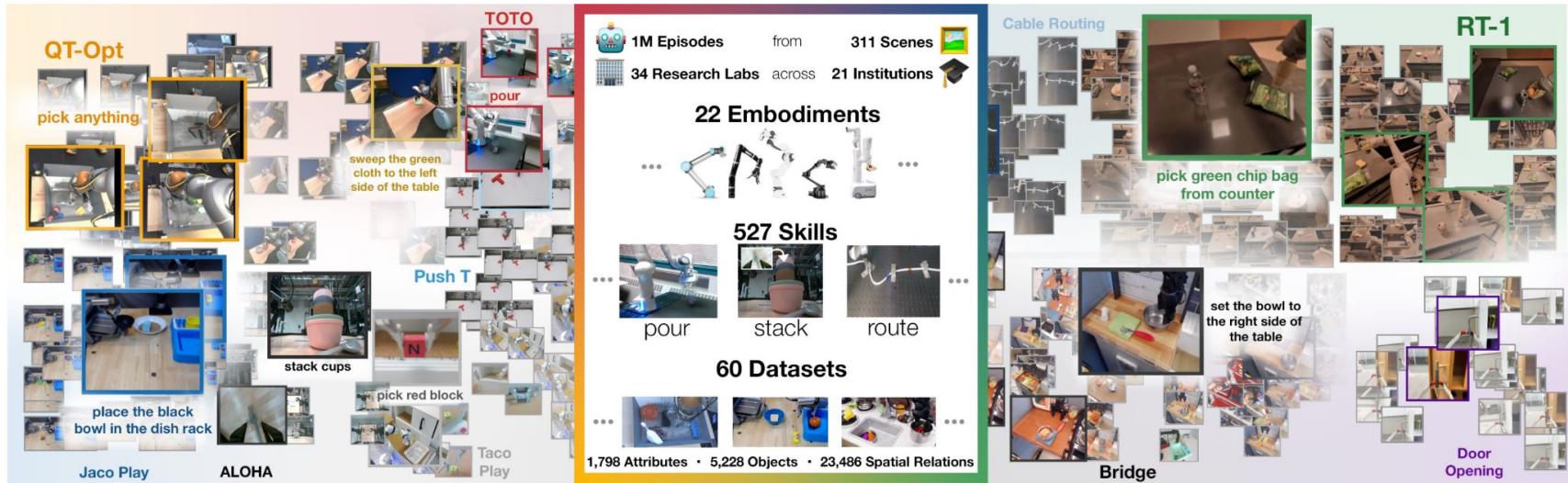
Given **language instruction** and **observations** from sensors,
output **action/sequence of actions**. Modern notable approaches
are based on:

- hybrid models
- diffusion models
- transformers
- VLLMs

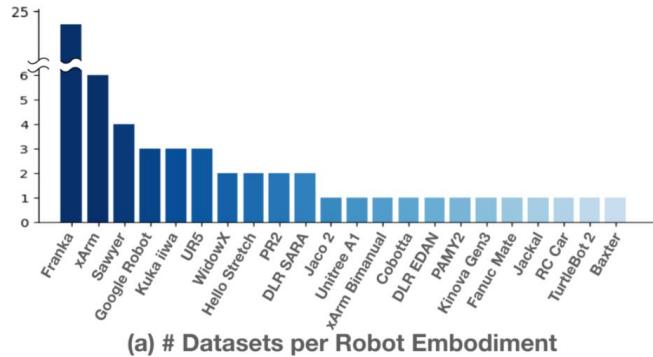
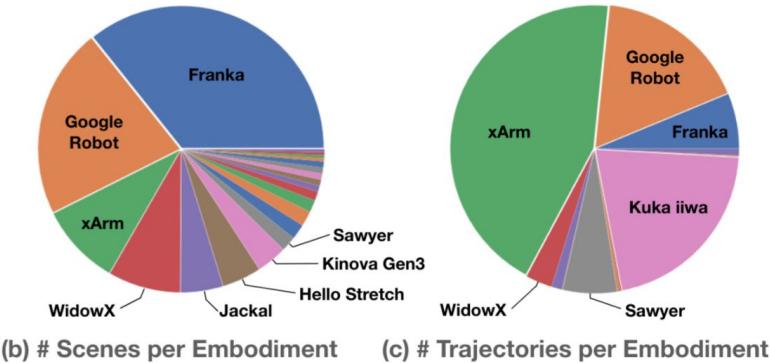
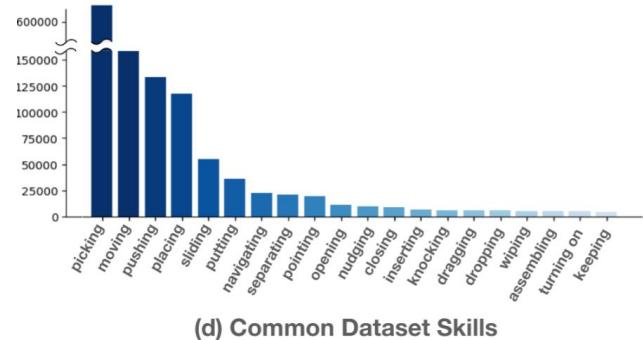
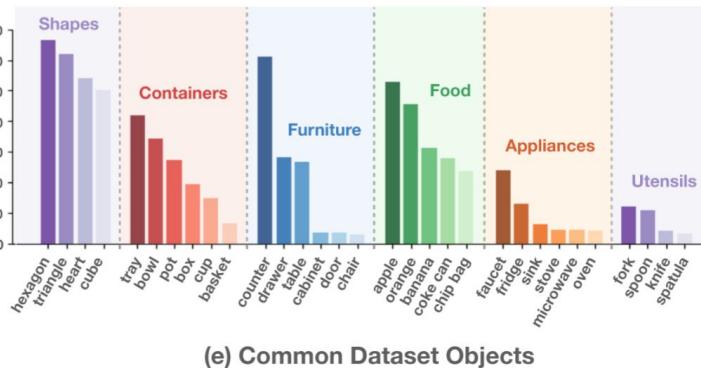
instruction: slide the green star
next to the red moon



Towards ImageNet for manipulation: Open X-Embodiment

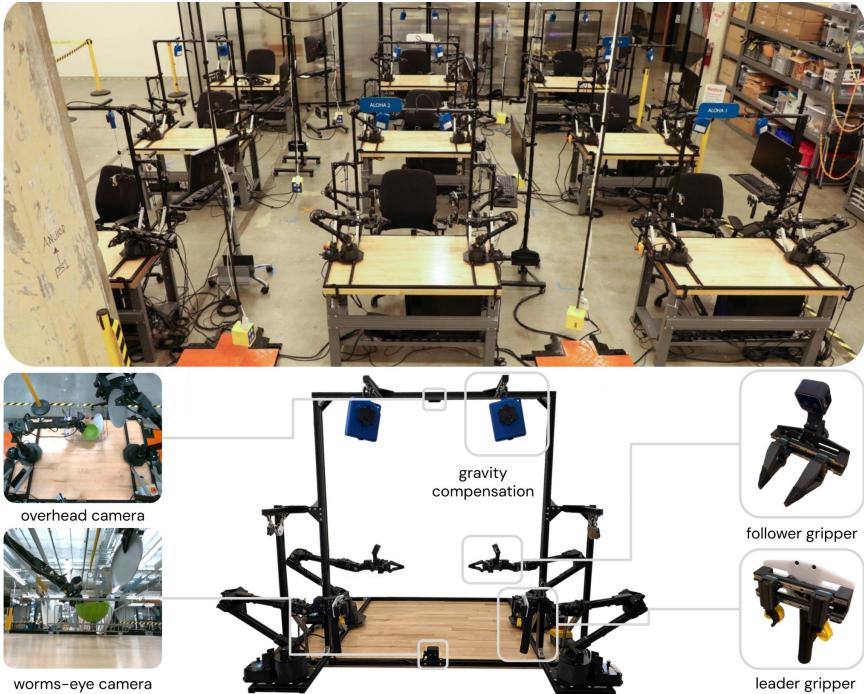


Open X-Embodiment



Open X-Embodiment

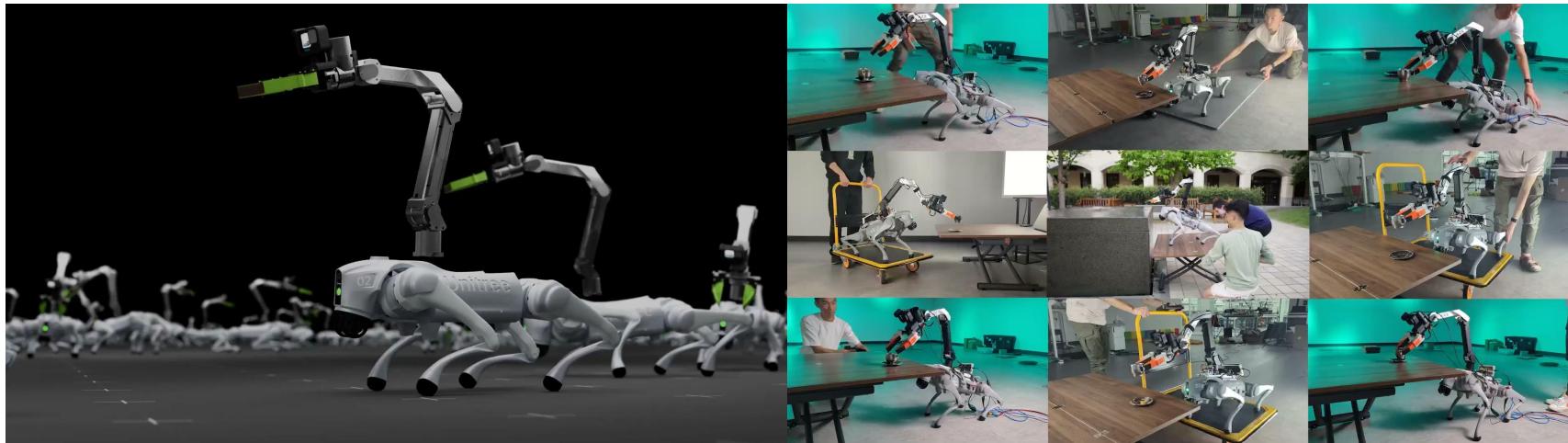
Collecting real data: ALOHA



Collecting real data: ALOHA

Collecting real data: UMI

Adapting real data for movement: UMI on Legs



Hybrid policy: RT-1

Training data: 130k episodes, 700 tasks, collected with 13 robots over 17 months. Inference time is 100ms, overall system works at 3 Hz

(a)

(b)

(c)

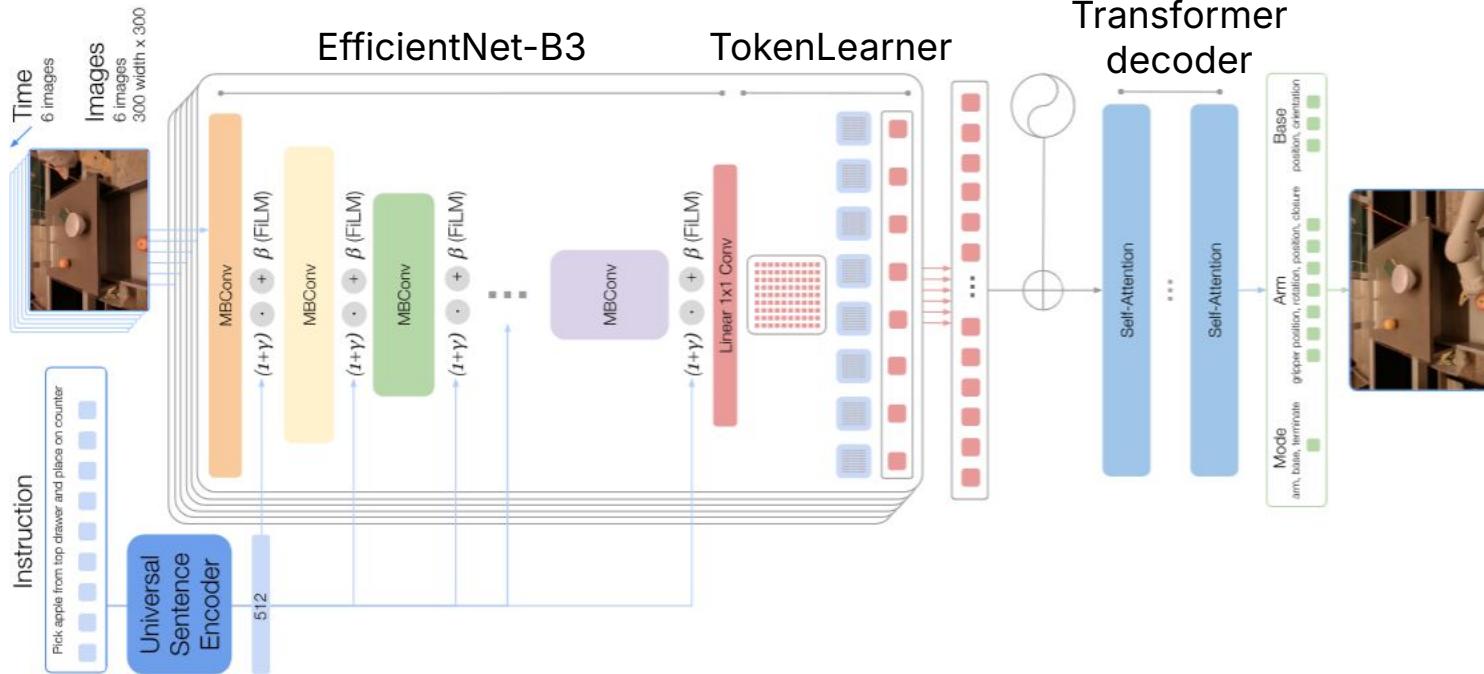
Frontal view,
Pre-manipulation pose

(d)

(e)

(f)

Hybrid policy: RT-1



Hybrid policy: RT-1

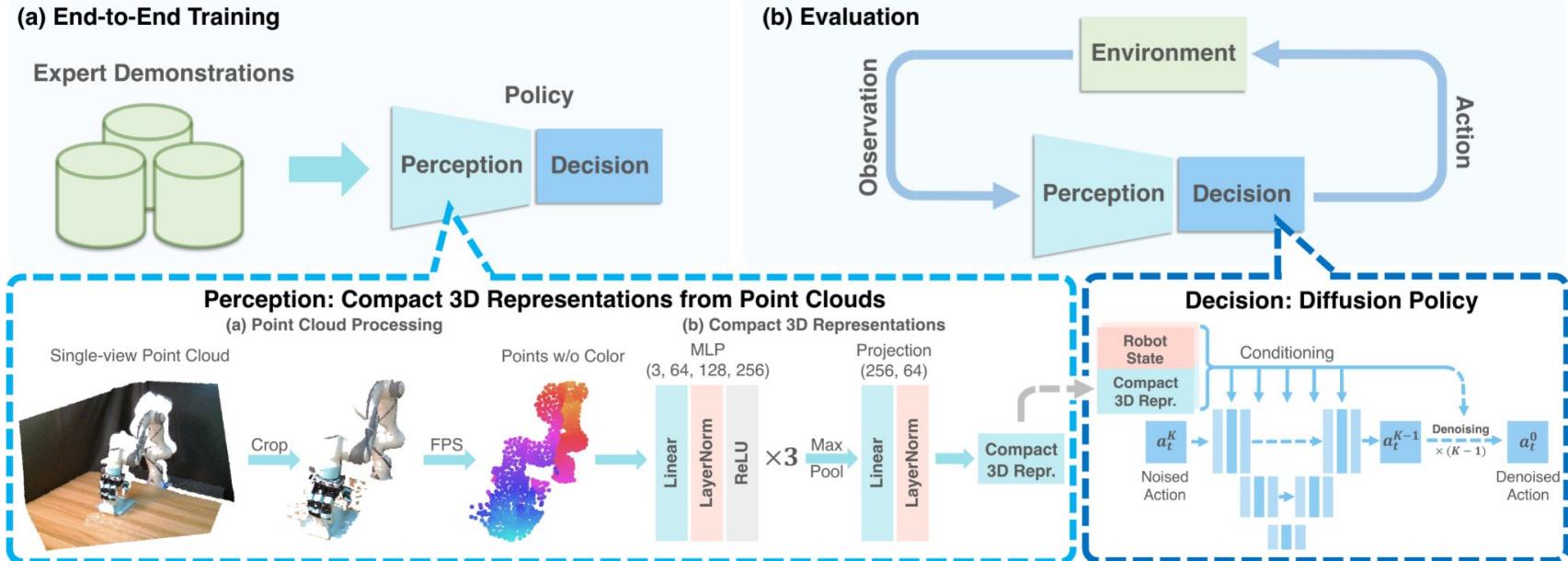
Key results:

- RT-1 (35M parameters) successfully performs large number of instructions and generalizes to new tasks and environments
- Adding synthetic data for unseen tasks improves success rate
- RT-1 may be used together with SayCan to solve long-horizon tasks

Skill	Count	Description	Example Instruction
Pick Object	130	Lift the object off the surface	pick iced tea can
Move Object Near Object	337	Move the first object near the second	move pepsi can near rxbar blueberry
Place Object Upright	8	Place an elongated object upright	place water bottle upright
Knock Object Over	8	Knock an elongated object over	knock redbull can over
Open Drawer	3	Open any of the cabinet drawers	open the top drawer
Close Drawer	3	Close any of the cabinet drawers	close the middle drawer
Place Object into Receptacle	84	Place an object into a receptacle	place brown chip bag into white bowl
Pick Object from Receptacle and Place on the Counter	162	Pick an object up from a location and then place it on the counter	pick green jalapeno chip bag from paper bowl and place on counter
Section 6.3 and 6.4 tasks	9	Skills trained for realistic, long instructions	open the large glass jar of pistachios pull napkin out of dispenser grab scooper
Total	744		

Diffusion-based policies

Capture well multimodal nature of high-dimensional action distribution
Scalable for high dim. output (sequence of actions)



Transformer-based policies: Octo

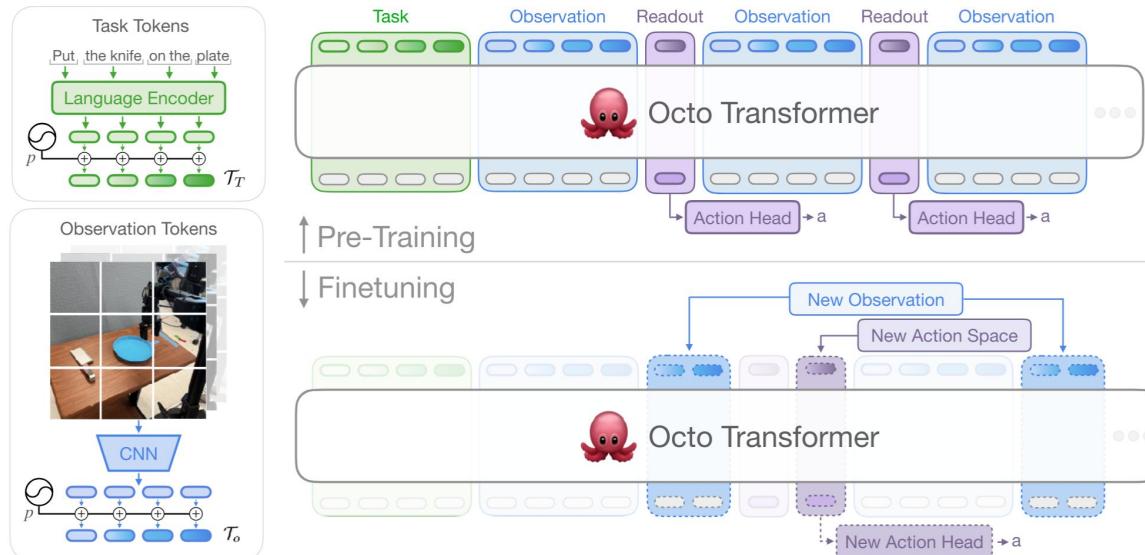


Fig. 2: **Model architecture.** **Left:** Octo tokenizes task descriptions (green) and input observations (blue) using a pretrained language model and a lightweight CNN, respectively. **Top:** The transformer backbone processes the sequence of task and observation tokens and produces readout tokens (purple) that get passed to output heads to produce actions. **Bottom:** The block-wise attention structure of the transformer allows us to add or remove inputs and outputs during finetuning: for example, we can add new observations (blue, dashed) or action spaces (purple, dashed) without modifying any pretrained parameters.

3 components:
tokenizers, transformer, action head

t5-base (111M) for text tokeniz.
Octo-Small (27M) \approx ViT-S
Octo-Base (93M) \approx ViT-B

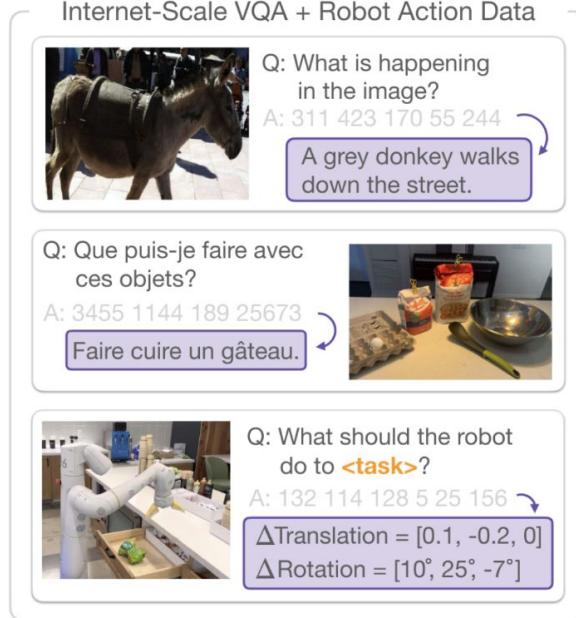
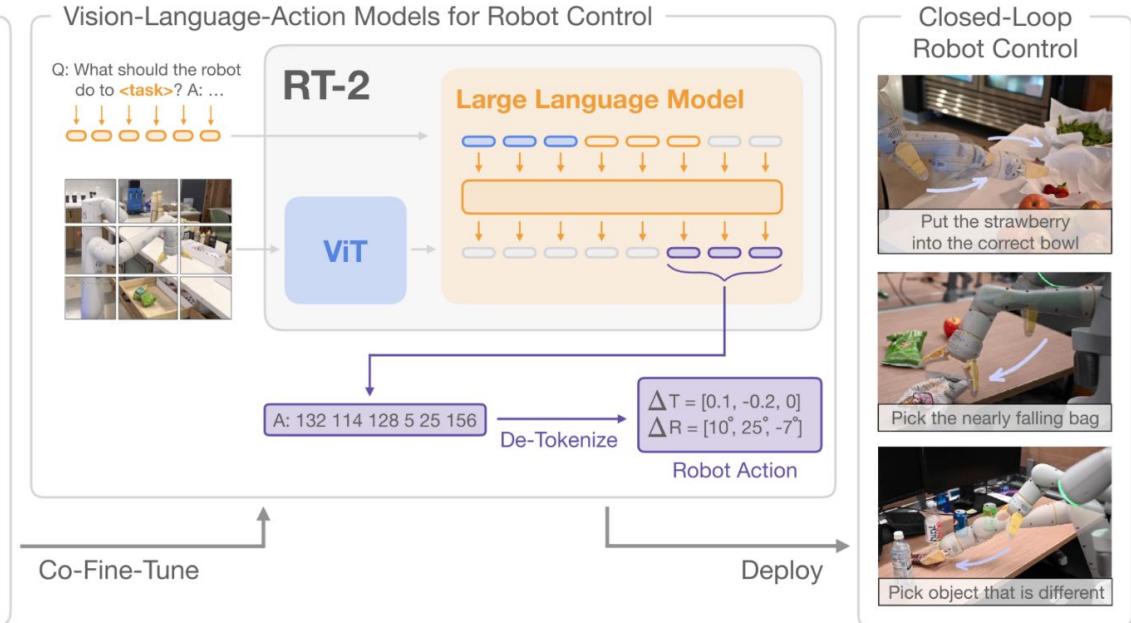
Pretrained on 128 TPUv4
(\approx 200 A100) for 14 hours,
much longer than on ImageNet

May be finetuned
on 3090 in 4 hours

**Best starting point for training
own manipulation policies**

VLLMs as policies: RT-2

Aim to utilize general knowledge obtained from web data

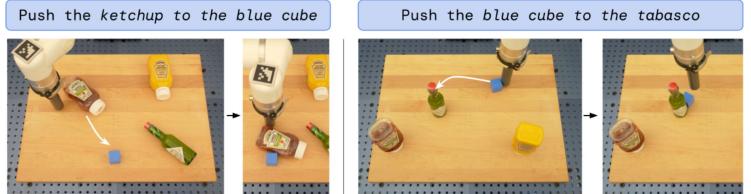
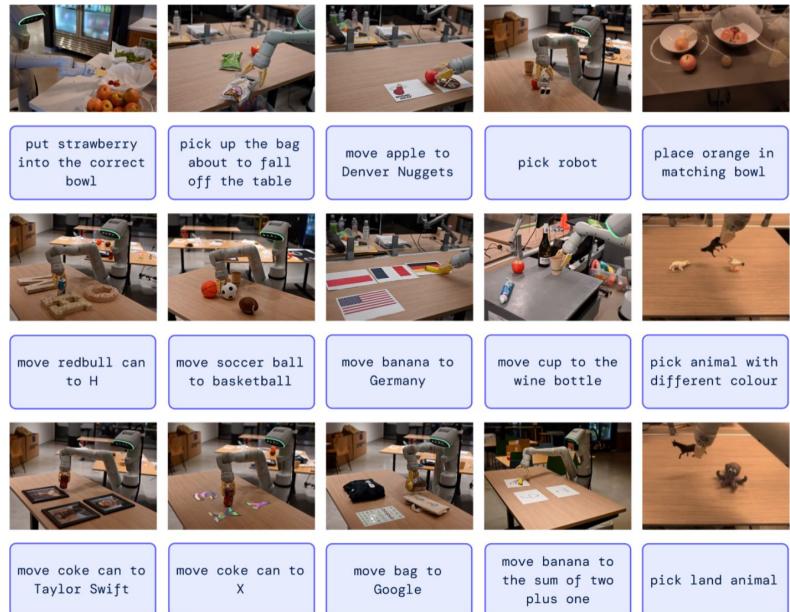


RT-2

Key idea: reuse knowledge from LLM

Results:

- better generalization to unseen objects and environments
- symbol understanding:
move apple to 3
- reasoning:
move apple to cup with same color,
move X near the sum of two plus one,
move la manzana al vaso verde
- human recognition:
move the coke can to the person with glasses



RT-2 simple chain of thought

Prompt:
Given Instruction: Bring me a drink.
Prediction:
Plan: pick 7up can.
Action: 1 143 129 123 145
114 115 127

Prompt:
Given Instruction: Move all the objects together.
Prediction:
Plan: move green can near green rice chip bag.
Action: 1 128 126 127 135
123 119 127

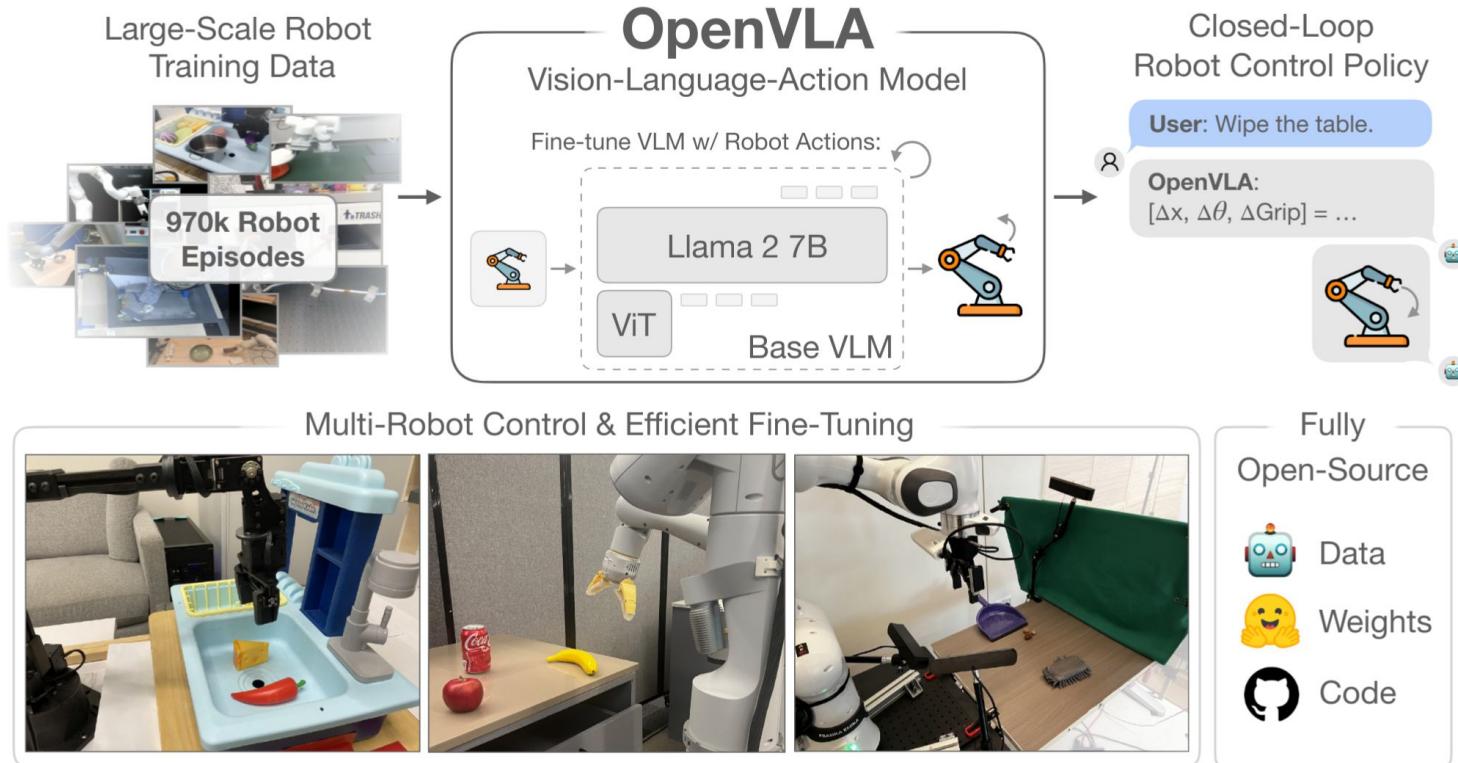
Prompt:
Given Instruction: Pick the object that is different from all other objects
Prediction:
Plan: pick rxbar chocolate. Action: 1 128
129 125 131 125 128 127

Prompt:
Given Instruction: Move the green objects together.
Prediction:
Plan: move green can near green rice chip bag.
Action: 1 130 129 121 131
127 128 127

Prompt:
Given I need to hammer a nail, what object from the scene might be useful?
Prediction:
Rocks. Action: 1 129 138
122 132 135 106 127

Figure 7 | Rollouts of RT-2 with chain-of-thought reasoning, where RT-2 generates both a plan and an action.

VLLMs as policies: OpenVLA



OpenVLA

Pretrained on 64 A100 for 14 days, finetuned on 8 A100 for 5-15 hours
Runs at 6Hz on 4090 in bfloat16 format

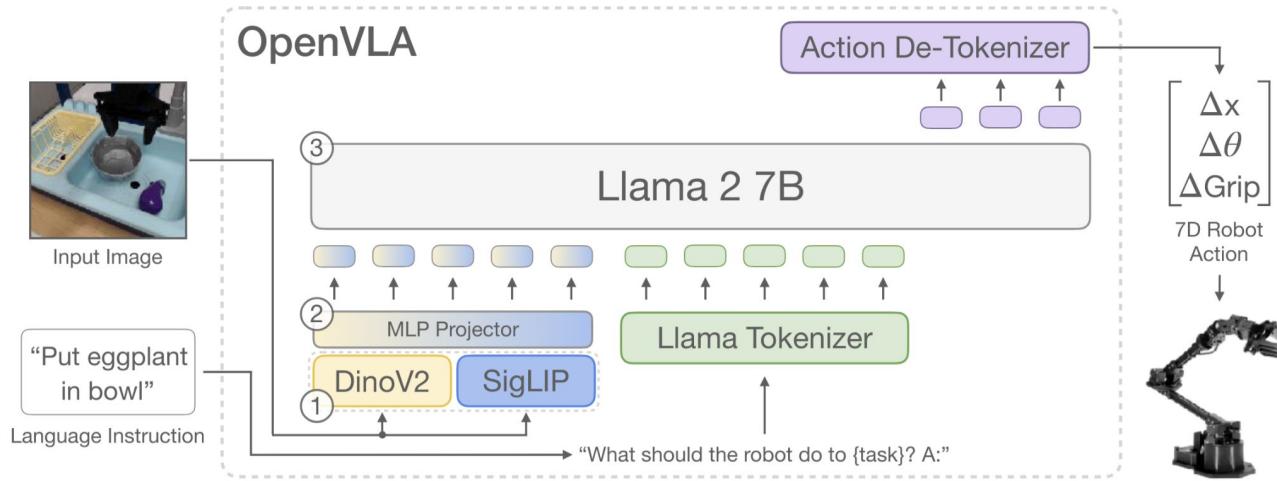


Figure 2: **OpenVLA model architecture.** Given an image observation and a language instruction, the model predicts 7-dimensional robot control actions. The architecture consists of three key components: (1) a **vision encoder** that concatenates Dino V2 [25] and SigLIP [77] features, (2) a **projector** that maps visual features to the language embedding space, and (3) the **LLM backbone**, a Llama 2 7B-parameter large language model [10].

OpenVLA

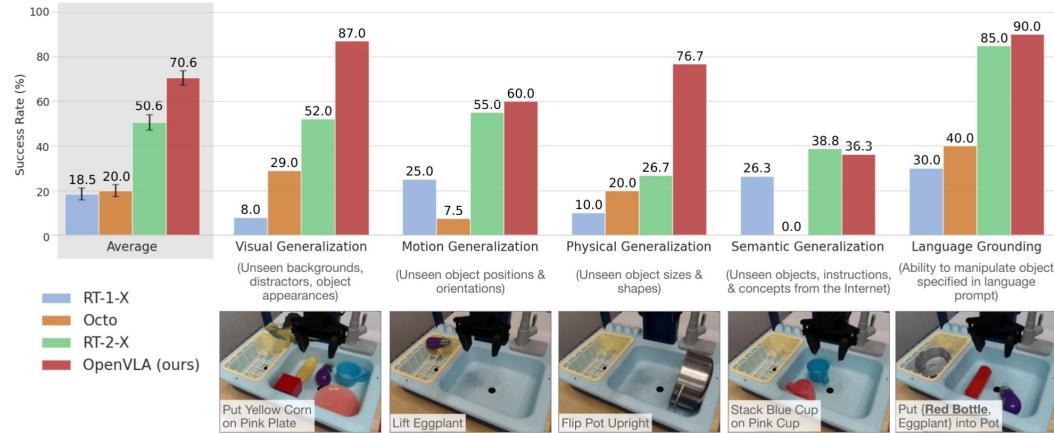


Figure 3: **BridgeData V2 WidowX robot evaluation tasks and results.** We evaluate OpenVLA and prior state-of-the-art generalist robot policies on a comprehensive suite of tasks covering several axes of generalization, as well as tasks that specifically assess language conditioning ability. OpenVLA achieves highest overall performance and even outperforms closed-source model RT-2-X in all categories except for semantic generalization. Average success rates \pm StdErr are computed across 170 total rollouts per approach. See Table 4 for detailed results.

Table 1: **Parameter-efficient fine-tuning evaluation.** LoRA fine-tuning [26] achieves the best performance-compute trade-off, matching full fine-tuning performance while training only 1.4% of the model parameters. Mean success rate \pm StdErr is computed across 33 rollouts per approach on select Franka-Tabletop tasks.

*: Sharded across 2 GPUs with FSDP [75].

Strategy	Success Rate	Train Params ($\times 10^6$)	VRAM (batch 16)
Full FT	69.7 \pm 7.2 %	7,188.1	163.3 GB*
Last layer only	30.3 \pm 6.1 %	465.1	51.4 GB
Frozen vision	47.0 \pm 6.9 %	6,760.4	156.2 GB*
Sandwich	62.1 \pm 7.9 %	914.2	64.0 GB
LoRA, rank=32	68.2 \pm 7.5%	97.6	59.7 GB
rank=64	68.2 \pm 7.8%	195.2	60.5 GB

8x speedup when training with LoRA (but we got only 3x)

OpenVLA

Future research directions:

- VLA model with multi-image/videos and depth observations
- Real-time inference (50Hz). After int4-quantization the model runs only at 3Hz
- Performance improvement (now SR < 90%)
- Co-training for VQA and action prediction is to be explored

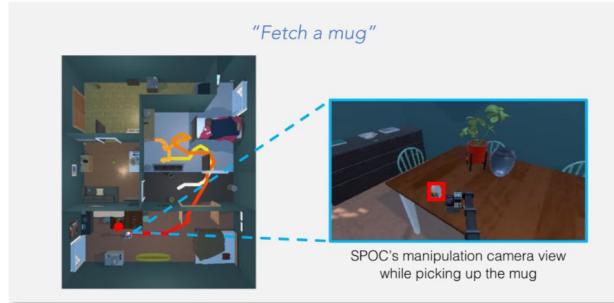
06

Acting: navigation

SPOC

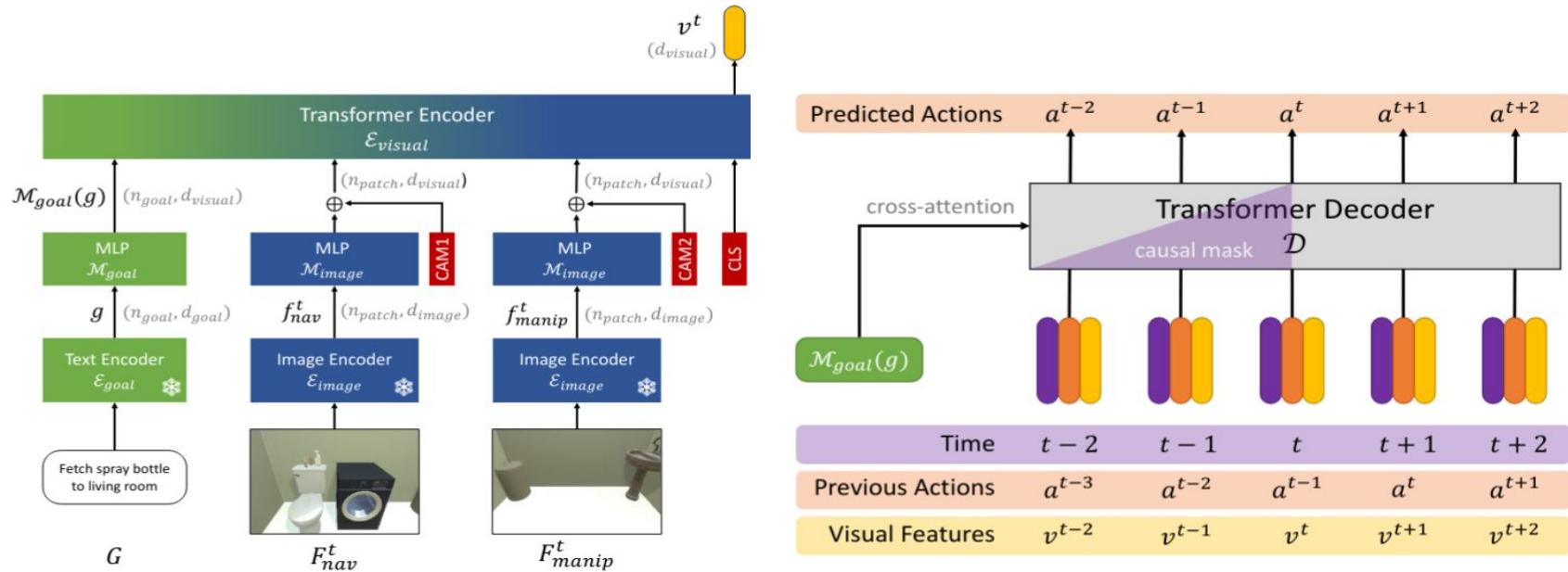
SIMULATOR

REAL WORLD



SPOC

Discr. actions: move base ($\pm 20\text{cm}$), rotate base ($\pm 6^\circ, \pm 30^\circ$), move arm (x, z) ($\pm 2\text{cm}, \pm 10\text{cm}$)



SPOC

Data:

- AI2THOR simulator
- 40k household objects from Objaverse dataset
- Use ProcTHOR to procedurally generate 200k houses (1-8 rooms)

Trajectories:

- Navigation: go to target using approximation of shortest path
- Manipulation: navigate to object, then iteratively minimize distance between robot and object
- Room visitation: calculate center of house, then navigate to all rooms via shortest paths

SPOC benchmarks

CHORES:

- navigation
- object recognition
- object manipulation
- exploration

CHORES Nav:

- open voc. instruction following
- object affordance
- scene understanding
- object comparison

Task	Description & Example
OBJNAV	Locate an object category: “find a mug”
PICKUP	Pick up a specified object in agent line of sight: “pick up a mug”
FETCH	Find and pick up an object: “locate a mug and pick up that mug”
ROOMVISIT	Traverse the house. “Visit every room in this 5-room house. Indicate when you have seen a new room and when you are done.”

Table 1. CHORES tasks.

Task	Target Description & Example
OBJNAV	Object’s category: “vase”
OBJNAVAFFORD	Object’s possible uses: “a container that can best be used for holding fresh flowers decoratively”
OBJNAVLOCALREF	Object’s nearby objects: “a vase near a tennis racket and a basketball”
OBJNAVRELATTR	Object category comparative attribute: “the smallest vase in the bedroom”
OBJNAVROOM	Object’s room type: “vase in the living room”
OBJNAVDESC	Open vocab instance description: “the brown vase painted orange with a bird on the side”
ROOMNAV	Type of room: “bedroom”

Table 2. CHORESNAV tasks. The full task specification also includes a navigation verb, such as “Search for a vase”.

SPOC

Key results:

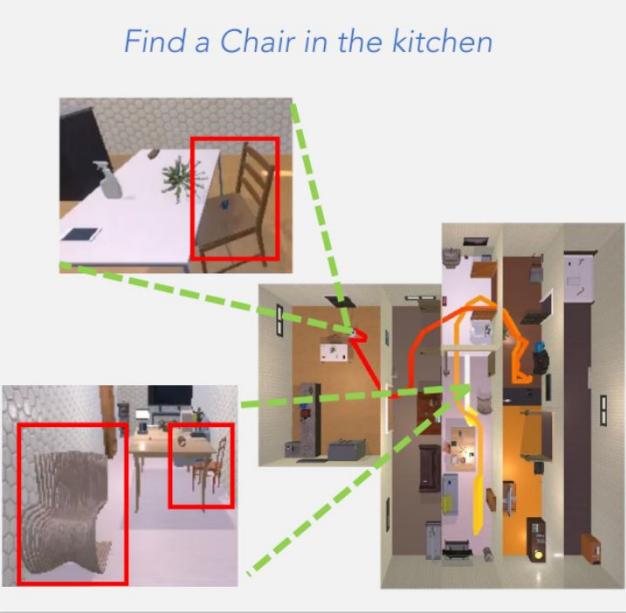
- Imitation learning outperforms RL in speed (3500 FPS vs 175 FPS) and quality
- Architecture scales well to multiple tasks
- Object detection means a lot
- Transformer encoders and decoders boost quality a lot
- Long horizon tasks require long context windows (100 timesteps here vs 6 timesteps in RT-1)
- SPOC generalizes to real world

Benchmark	Model	Training	OBJNAV			PICKUP			FETCH			ROOMVISIT			Avg Success
			Success	SEL	%Rooms	Success	SEL	%Rooms	Success	SEL	%Rooms	Success	SEL	%Rooms	
CHORES - \mathbb{S}	EmbSigLIP* [38]	Single-task RL	36.5	24.5	42.2	71.9	52.9	30.3	0.0	0.0	50.5	16.5	11.9	44.6	31.2
	SPOC-1-task	Single-task IL	57.0	46.2	51.5	84.2	81.0	30.3	15.1	12.6	48.1	43.7	40.4	81.2	50.0
	SPOC	Multi-task IL	55.0	42.2	56.3	90.1	86.9	30.3	14.0	10.5	49.3	40.5	35.7	81.1	49.9
	SPOC w/ GT Det	Multi-task IL	85.0	61.4	58.7	91.2	87.9	30.3	47.3	35.6	61.6	36.7	33.7	79.3	65.0
CHORES - \mathbb{L}	SPOC	Multi-task IL	33.7	25.1	53.7	75.1	69.1	31.5	10.6	8.1	42.9	35.0	33.2	77.8	38.6
	SPOC w/ GT Det	Multi-task IL	83.9	58.0	64.0	78.0	75.7	31.5	48.6	38.3	60.0	42.0	39.1	83.1	63.1

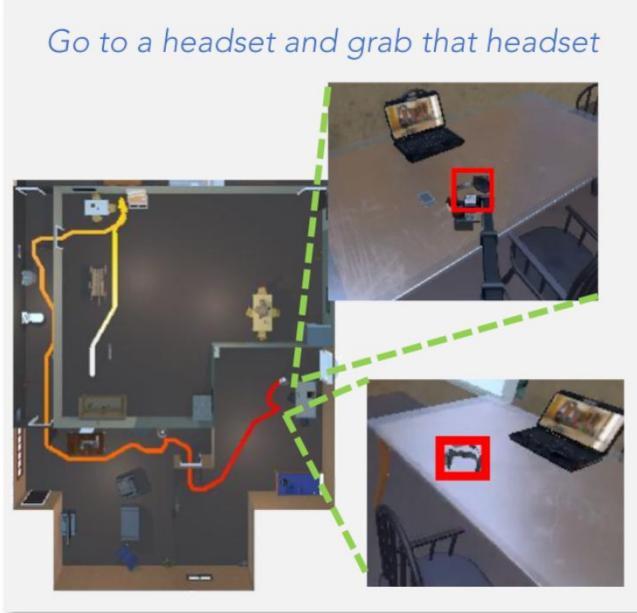
Model	OBJNAV	PICKUP	FETCH	ROOMVISIT	Average
SPOC	50.0	46.7 (66.7)	11.1 (33.3)	50.0	39.5
SPOC w/ DETIC	83.3	46.7 (86.7)	44.4 (44.4)	50.0	56.1

SPOC

Find a Chair in the kitchen



Go to a headset and grab that headset

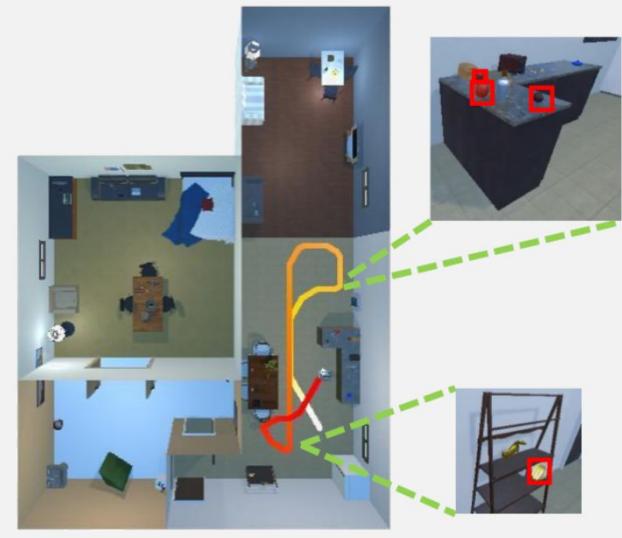


Left: skipping all chairs to find one in the kitchen

Right: repositioning itself to find a location where headset is reachable

SPOC

Navigate to the highest fruit in the kitchen



Locate a computer on a sofa

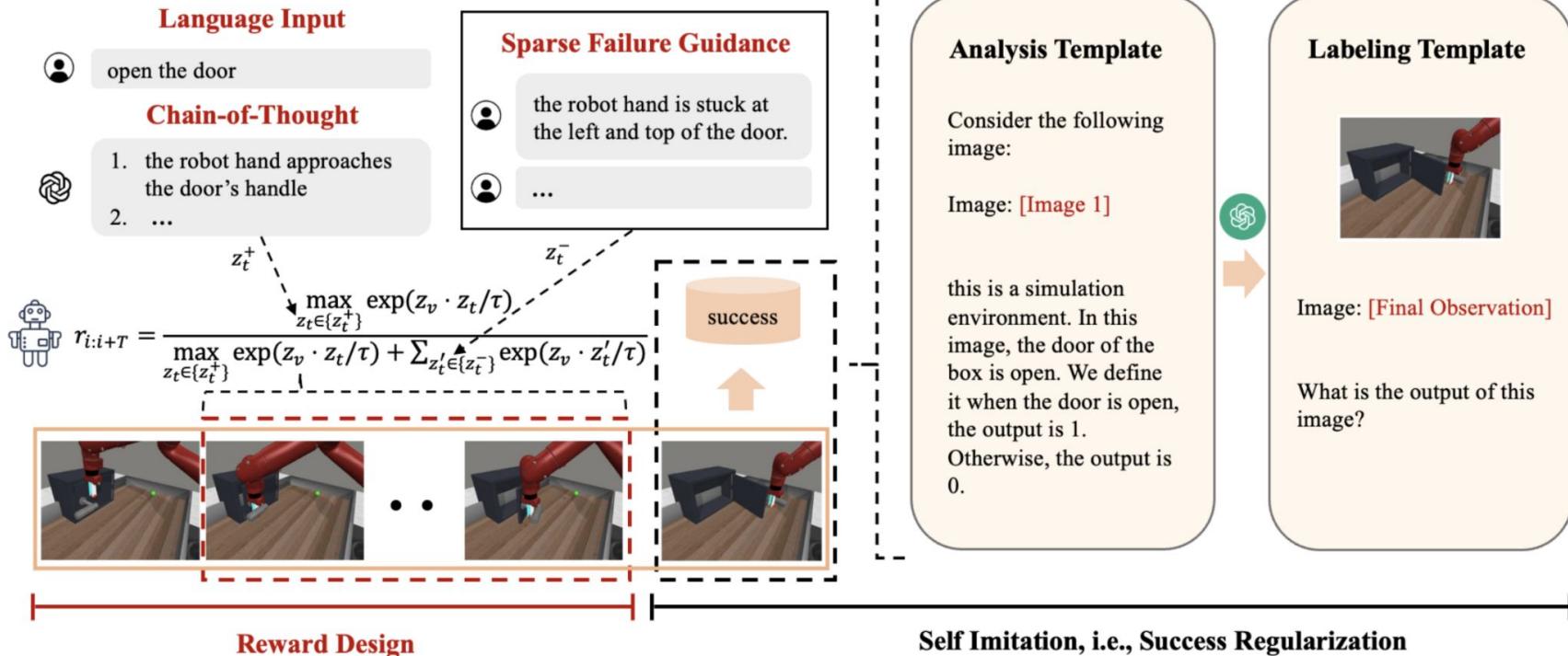
Left: looking for all fruits in the kitchen and then navigating to highest

Right: looking for a sofa which has a laptop on it

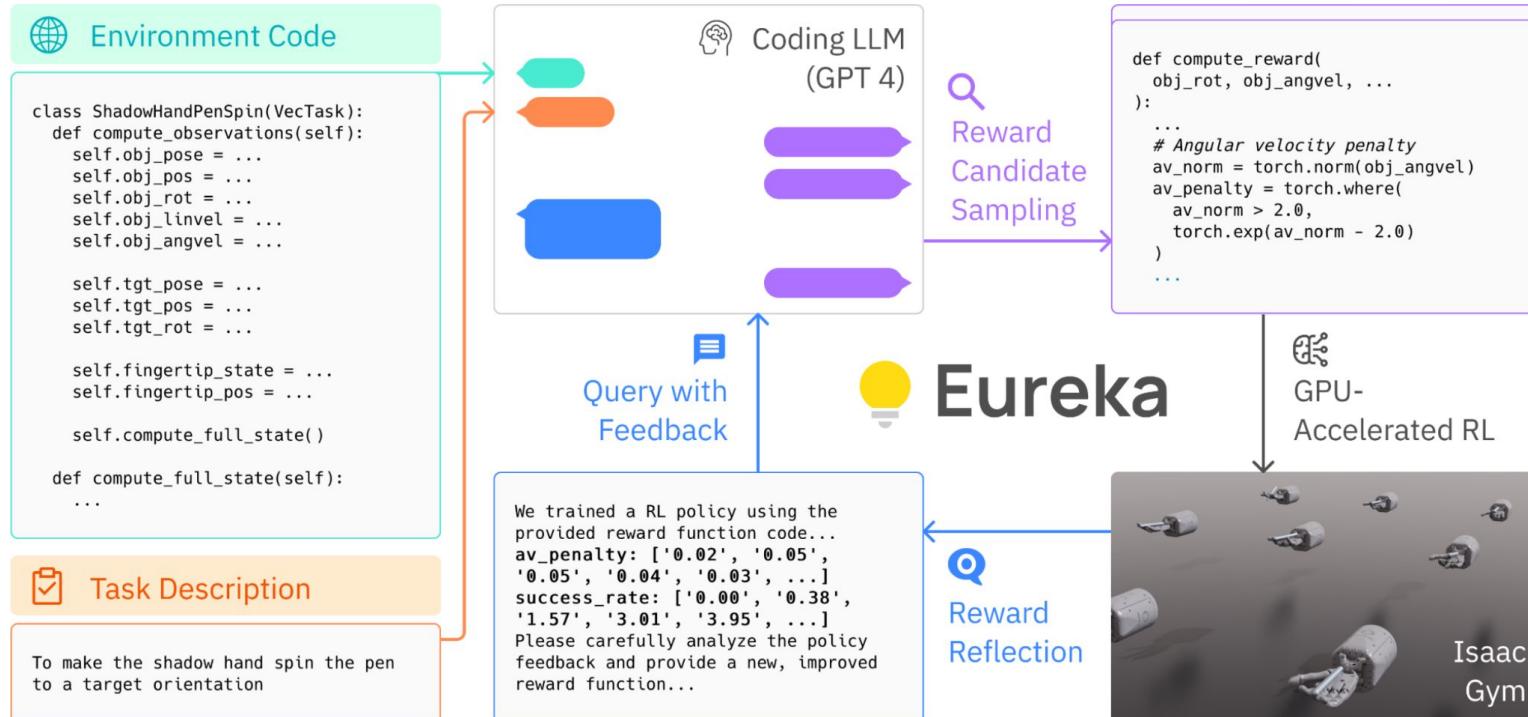
07

Reward function

RoboCoT



Eureka



Eureka

```
def compute_reward(object_rot, goal_rot, object_angvel, object_pos, fingertip_pos):
    # Rotation reward
    rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2
    - rotation_reward_temp = 20.0
    + rotation_reward_temp = 30.0                                         Changing hyperparameter
    rotation_reward = torch.exp(-rotation_reward_temp * rot_diff)

    # Distance reward
    + min_distance_temp = 10.0
    min_distance = torch.min(torch.norm(fingertip_pos - object_pos[:, None], dim=2), dim=1).values
    - distance_reward = min_distance
    + uncapped_distance_reward = torch.exp(-min_distance_temp * min_distance)
    + distance_reward = torch.clamp(uncapped_distance_reward, 0.0, 1.0)           Changing functional form

    - total_reward = rotation_reward + distance_reward
    + # Angular velocity penalty
    + angvel_norm = torch.norm(object_angvel, dim=1)                                Adding new component
    + angvel_threshold = 0.5
    + angvel_penalty_temp = 5.0
    + angular_velocity_penalty = torch.where(angvel_norm > angvel_threshold,
    +                                         torch.exp(-angvel_penalty_temp * (angvel_norm - angvel_threshold)), torch.zeros_like(angvel_norm))
    +
    + total_reward = 0.5 * rotation_reward + 0.3 * distance_reward - 0.2 * angular_velocity_penalty

    reward_components = {
        "rotation_reward": rotation_reward,
        "distance_reward": distance_reward,
    +     "angular_velocity_penalty": angular_velocity_penalty,
    }

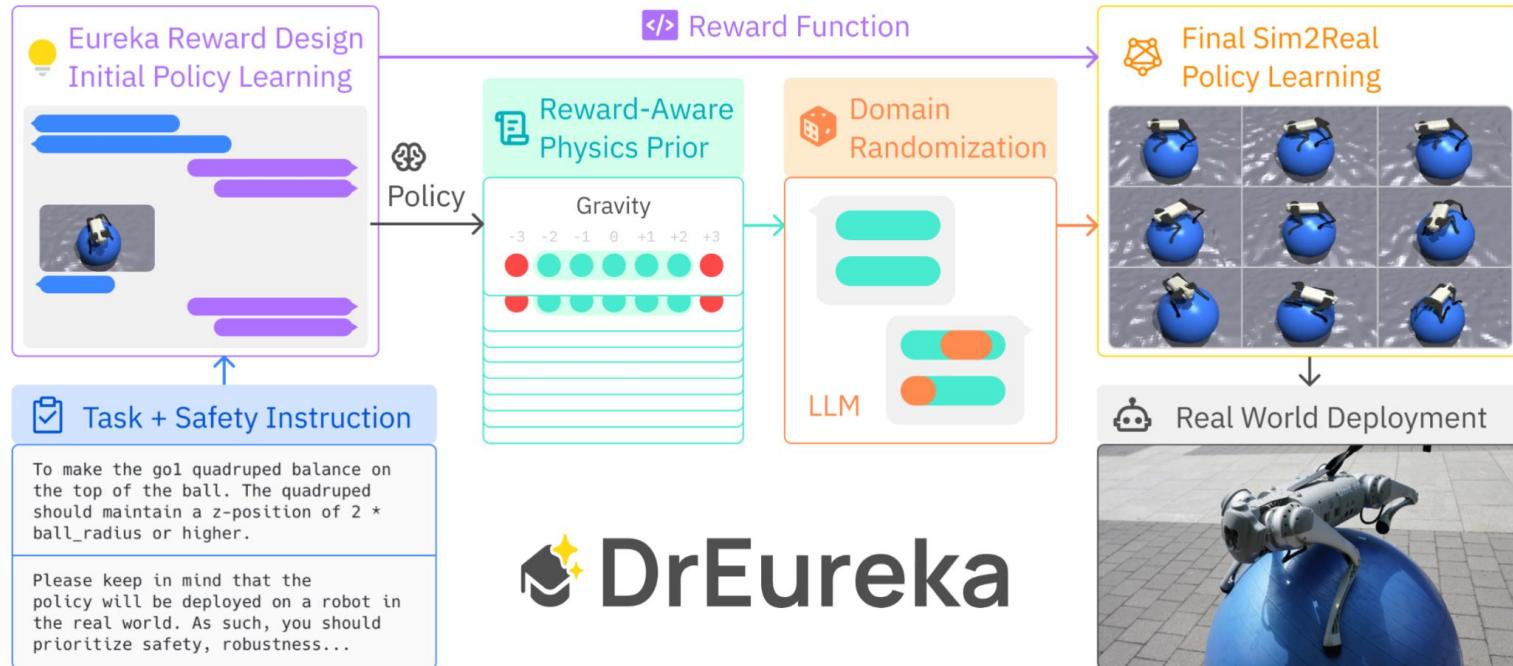
    return total_reward, reward_components
```

Eureka

Key results of the method:

- outperforms human reward on a wide range of environments
- consistently improves over time
- generates novel rewards compared to human rewards
- improves from human feedback

DrEureka



DrEureka

08

Open questions

(Some) Open questions

- Unified and effective evaluation
- Sim-to-real gap
- Pre-training fundamental models for robotics
- Efficient collection and usage of human demonstration data
- High inference time of foundation models
- Long-horizon task planning
- Life-long learning
- Ensuring robustness and safety of deployed models

Conclusion

- Embodied AI is a research area at the intersection of NLP, CV and RL
- Embodied agent has an **embodiment** and **AI software**
- EAI models enable robot to **perceive** the world, **talk**, **reason** and **act**
- Evaluation of EAI models in general is a very challenging task
- Despite a decade of the rapid progress in NLP and CV, EAI systems (**understanding the world, planning and acting**) are in the beginning of their development