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Embodied Al

Goal of EAIl is to create intelligent agents (i.e.
robots) with physical embodiment that can
solve challenging tasks. Such agents should
be able to:

- Perceive: see, listen, touch their
environment using various sensors and
extract meaningful information

- Talk: hold a natural dialog grounded in
their environment

- Reason: consider and plan for the
long-term consequences of their actions

- Act: navigate and interact with their
environment to accomplish goals




General-purpose robots
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Static benchmarks for CV/NLP

A lot of CV/NLP benchmarks are available for various tasks:

reproducible
cheap
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Heterogeneous Image Types
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Diagrams, Tables, Plots and Charts,
Photographs, Chemical Structures,
Paintings, Medical Images, Sheet
Music, Geometric, Pathology images,
Microscopic Images, Comics, ...

have big domain shift in relation to robotics data
may be only a proxy metric/guidance for choosing baseline models

Interleaved Text and Images

Question: You are shown
subtraction <image 1>, T2 weighted
<image 2> and T1 weighted axial
<image 3> from a screening breast
MRI. What is the etiology of the
finding in the left breast?

\
e e

<image 1> <image 2> <image 3>

Yue et al. MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI. CVPR 2024

Expert-level Skills Test

Expert-level Visual Perception

' Sheg

Domain Expertise,
World, Linguistic,

Visual Knowledge,...

Logical, Spatial
Commonsense,
Mathematical,...



Arena for evaluating VLLMs
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Lu et al. WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences. arXiv:2406.11069



Simulator: static scans vs CAD

Scan-based env: CAD-based env:
- relatively fast to collect hard to prepare
realistic look realistic look requires a lot of effort

9
- very fast to render may be challenging to render
- limited number of supported tasks all tasks are supported

R R R 2

Szot et al. Habitat 2.0: Training Home Assistants to Rearrange their Habitat. NeurIPS 2021.



Simulator: world model

World model is a special case of simulators.
Usually these models allow to obtain sensor
data conditioned on actions and additional
input

Generate a playable world
set in a futuristic city


https://docs.google.com/file/d/11mgRmo8LhJ7ES95YvZWfrAzrWffEZGHz/preview
https://docs.google.com/file/d/1xxvRlzMOi4i2nYieDsClFC5CDVtoJLQG/preview

Real-world evaluation

the only evaluation that really matters
very slow

very expensive and technically complex
scales badly

2R 20 20 2

Cook Shrimp

(autonomous)

Real-time

Use Cabinets
(autonomous)
(lift a 3 Ibs pot)

Real-time
Wipe Wine

(autonomous)

Real-time

Fu et al. Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation. arXiv:2401.02117


https://docs.google.com/file/d/1jMSxU0Gz38-TdE-eAfuefuEuxcne-z7r/preview
https://docs.google.com/file/d/1wRIoGneM91pkkPCDQsjbVIA3QcgdosGz/preview
https://docs.google.com/file/d/1qIZefoQkUBVm0Oc4zevZgXioMwWSYZ-l/preview

Comparison of evaluation methods

Static Arena End-to-end End-to-end
benchmarks sim real
Relevance Low Medium Medium High
Safety High High High Low
Speed High Medium Medium Low
Cheapness High Medium Medium Low
Reproducibility High High Medium Low
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Understanding the world
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3D reconstruction (SLAM)




3D segmentation

3D scene representation (i.e. point cloud) is segmented into a fixed set of classes

Input Ground Truth Instance Semantic

Kolodiazhnyi et al. OneFormer3D: One Transformer for Unified Point Cloud Segmentation. CVPR 2024

Panoptic

15



Embodied question answering

Agent has to answer questions about environment. Two scenarios are possible:
- pre-recorded video stream
- fully interactive mode: agent can freely explore environment

Evaluation of answers is done with GPT-4 or via human evaluation

Camera

Rt
. @ / oooj

Environment Trajectory Multimodal Observations Open-Vocabular Q&A

Majumdar et al. OpenEQA: Embodied Question Answering in the Era of Foundation Models. CVPR 2024.



Planning




Planning with ground truth

Planning is decomposing high-level task into sequence of sub-tasks. Simplest case of

planning is planning with ground truth:

9

obtaining ground truth is laborious
- quality may be measured by com

Task Goal: Clean and tidy the
livingroom. Put all misplaced
objects back in their proper

| positions. Make sure the living
\ room sofas, coffee tables,

Al S1.grasp(book)
S2.navigate_to(bookshelf)
S3.place_onRight(book,
bookshelf)
S4.navigate_to(fruit_tray)
S5.grasp(fruit_tray)
S6.place_under(fruit_tray,
kitchen_counter)
S7.navigate_to(remote_control)
S8.place_inside(apple,fruit_bowl)
S9.navigate_to(remote_control)
$10.grasp(remote_control)

S11.place_onTop(remote_contro

w coffee_table) L

/

\
\
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
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Task Goal: Put all the bottles
into the bucket.

o S1.navigate_to(table) \\

S2.grasp(bottle.1) 1
S3.navigate_to(bucket) 1
S4.place_ inside(bottle.1,bucket) }
S5.grasp(bottle.2) :
S6.navigate_to(bucket) ]
S7.place_ inside(bottle.2,bucket) i
S8.grasp(bottle.3) E
S9.navigate_to(bucket) !
$10.place_ inside(bottle.3,bucket) !
i
i
|
|
)

i Task Goal: Put the leftmost food
| of the dinner table into the

\
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'
'
'
'
'
'
'
'
'
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'
'
'
1
i

/* S1.navigate_to(table) \
S2.grasp(apple)
S3.navigate_to(fridge)
S4.open(fridge)

S5.place_ inside(apple,fridge)
S6.close(fridge)

I' \
0 '
i .
i i
i I
i 1
i i
i '
; ;

i
| Task Goal: Clean the table with !
| asponge. )
| 1
i i
i |
i |
\ /
% K
/ Sl.navigate_to(table) N

S2.navigate_to(rag)
S3.grasp(rag)

S4.wipe(rag, table)

Zhang et al. MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning. arXiv:2407.05047



Open-world planning

Planning success plummet in open worlds due to new challenges

Challenge #2: State-dependent Task Feasibility

4 . N
E oy Minecraft [ Planner w/ Learned Controller
<N ALFWorld [ Planner w/ Oracle Controller
42%
! Tabletop Environment
- 80%
] 99%
10 50 60 7 10
\_ Success Rate )
Challenge #1: Complex Sub-task Dependency
3 , N
“put the blue blocks M
in a green bowl”
Manipulation in Tabletop environment
\_ Mine diamond in Minecraft environment Y,

Wang et al. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. NeurlPS 2023



Open-world planning

Two challenges arise in open-world
planning:

- complex sub-task dependency that
may be unknown in advance

- sub-task feasibility depends on the
(complex/unobservable) state of the
world

Therefore:

- we can't benchmark planning on fixed
ground truth sequences, running in
simulator and measuring success rate
(SR) is the only option

- the planning module has to be
adaptable and be able to modify the
plan

Task instruction: Obtain a diamond @ in Minecraft survival mode step-by-step?

Initial Plan P: “ §—>“. >®
1
> /—> )i—x->ﬁ—>w—>7ﬁ —>'J

1

Candidate goals: @@2
B i Selected Goal g,: &3 X 4
g The agent locates in the birch forest,
which only has birch wood.

Description d; : I succeed on goal 1-5. 1
fail on goal 6, mining 3 @ with 2 .
Now my inventory has 5 planks, ...

Explanation: Because mining ‘ needs to
use at least A, which I do not have.
So I need to craft A first.

Wang et al. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. NeurlPS 2023

Updated Plan P,:
> >@0—> A0
3 1 3 3 1 1

Selected Goal
9: @x3
no other choices

Description d,: I succeed on goal ....1
fail on smelting 3= from 3 &, on§.
My inventory now has 3 iron ore, ...

Explanation: Because smelting = needs
to use §Pand @ , which I do not have.
So I need to craft ‘  first.

Task Finished !
\
Finished Plan Pr: > Ve

‘—>‘—>.—>\¢'—>ﬁ—>®

20



Describe, Explain, Plan and Select (DEPS)

Instruction
4
(Re-)Planner Explainer
LLM* explain LLM*

| t

plan P; description d,

| I

Selector Descriptor
HPM VLM
| t
goal g, feedback

Controller
Goal-conditioned Policy

obst 1 action
obs

Environment

Task instruction: Obtain a diamond @ in Minecraft survival mode step-by-step?

Initial Plan Py: “ j*“ﬁ»‘
> /—> )l-x->‘—>©—>7ﬁ —>® l

Candidate goals: @@2
Selected Goal g4: 83 X 4

which only has birch wood.

Si Agent

Description d; : I succeed on goal 1-5. 1
fail on goal 6, mining 3 @ with 2 .
Now my inventory has 5 planks, ...

Explanation: Because mining ‘ needs to
use at least A, which I do not have.
So I need to crafi 2 first.

The agent locates in the birch forest,

Updated Plan P,:
B> ->@o>A—>0
3 1 1

1 3 3

Selected Goal

gt ‘><3

no other choices

Description d,: I succeed on goal ... 1
fail on smelting 3 from 3§, on§p.
My inventory now has 3 iron ore, ...

Explanation: Because smelting = needs
to use §@ and @ , which I do not have.
So I need to craft ‘  first.

Task Finished !
\
Finished Plan Py: =

‘—>‘—>O->w—>7ﬁ—>®

‘ Mine oak wood f‘;" Mine birch wood. Craft acacia planks ‘ Craft crafting table 4 Craft stick ‘ Mine iron ore {i Mine coal‘ Craft furnace (& Mine diamond

‘Mine acacia wood ‘Craft oak planks ﬁ Craft birch planks) Craft wood pickaxeﬁ Craft stone pickaxe . Mine cobblestone i Smelt iron ingot?u Craft iron pickaxe



Describe, Explain, Plan and Select (DEPS)

I B i B (P IR (i

Goal: Meat*3 Goal: Log*2 Goal: Coal*1 AND Iron Ore*1 Goal: Survive in Night.
Candidate Skill: Kill Sheep  Candidate Skill: Chop Oak Candidate Skill: Mine Coal AND Candidate SKkill: Sleep in bed
OR Cow OR Pig OR Birch OR Acacia Tree Iron_Ore OR Dig down.

Selection: Kill Sheep Selection: Chop Acacia Tree  Selection: Mine Iron Ore Selection: Sleep in_bed

Explanation: Meet sheep first. Explanation: Savanna biome  Explanation: Meet iron_ore first. Explanation: Village has beds.

only has Acacia tree.

Selector ranks candidate skills according to trained value/affordance function

22



Describe, Explain, Plan and Select (DEPS)

Meta Name Number Example Task Max. Steps Initial Inventory  Given Tool

MT1 Basic 14 Make a wooden door. 3000 Empty Axe

MT2  Tool (Simple) 12 Make a stone pickaxe. 3000 Empty Axe

MT3 Hunt and Food 7 Cook the beef. 6000 Empty Axe

MT4 Dig-Down 6 Mine coal. 3000 Empty Axe

MTS5 Equipment 9 Equip the leather helmet. 6000 Empty Axe

MT6 Tool (Complex) 7 Make shears and bucket. 6000 Empty Axe

MT7 IronStage 13 Obtain an iron sword. 6000 Empty Axe

MT8 Challenge 1 Obtain a diamond! 12000 Empty Axe
Methods MTI1 MT2 MT3 MT4 MTS5 MT6 MT7 MTS AVG
GPT[16, 32] 25.85+24.8 47.88+31.5 10.78%£14.6  7.144+9.0 1.98+5.9 0.0+£0.0 0.0£0.0 0.0£0.0 1542
PP[42] 30.61+23.6  40.09+30.6 17.13+£19.1 16.00+17.3 3.21+4.9 047£1.3 0.60+2.2 0.0+£0.0 16.88
CoTl[45] 40.24+30.8 55.21£26.8  6.82+11.6 4.76+8.2 1.7345.2 0.0+0.0 0.0+0.0 0.0+£0.0 18.89
IM[17] 46.89+31.4  53.73£20.8 3.64+6.9 1841£17.4  457+74 0.64+1.7 102425 0.0+£0.0 21.64
CaP[20] 60.08+17.3 60.11+£20.24  8.7249.7  20.33+21.0 2.84+4.6 0.63£1.3 0.60+2.2 0.0+£0.0 25.77
DEP 75.70+104 66.13+134 45.69+16.2 43.35+20.2 15.93+139 5.71+3.7 4.60+7.1  0.50+0.5 39.36
DEPS 79.77£8.5  79.46+£10.6 62.40+17.9 53.32429.3 29.244+27.3 13.80+8.0 12.56+13.3 0.59+0.5 48.56

23



Describe, Explain, Plan and Select (DEPS

24






Manipulation

Given language instruction and observations from sensors,
output action/sequence of actions. Modern notable approaches
are based on:

- hybrid models

- diffusion models

- transformers

- VLLMs

instruction: slide the green star
next to the red moon

26



Towards ImageNet for manipulation: Open X-Embodiment

s
& 1M Episodes from 311 Scenes G

34 Research Labs across 21 Institutions i’

22 Embodlments

- gl -

527 Skills

sweep the green
cloth to the left

side of the table m' 3 ,

v pick green chip bag
from counter

o LY N ...
set the bowl to
the right side of
stack route © e
60 Datasets

place the black
bowil in the dish rack

3 L B E

|
" 1,798 Attributes - 5,228 Objects - 23,486 Spatial Relations
Jaco Play ALOHA = . 2

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic Learning Datasets and RT-X Models. arXiv:2310.08864

27



WidowX

Kinova Gen3
Hello Stretch

WidowX g

Open X-Embodiment

(c) # Trajectories per Embodiment

(b) # Scenes per Embodiment

(a) # Datasets per Robot Embodiment

Utensils
S,
K€

Furniture

Containers

10000 -
8000 -
6000 -
4000 1
2000 -

14000 1
12000 -

600000 i\ .
150000
125000
100000
75000
50000
25000

(e) Common Dataset Objects

(d) Common Dataset Skills

28



Open X-Embodiment

29


https://docs.google.com/file/d/1bKJZ8b_KwZQKQIQH0NcykgvPoL24UmVV/preview
https://docs.google.com/file/d/1iu1SimueWr16777KfLOXoZk4p7zgxgQS/preview
https://docs.google.com/file/d/1PzzrspWyL8ExU4kpDXocORyAKz4ikMom/preview
https://docs.google.com/file/d/1-EUvP6QSPXpdoxmhy0TXfpbRDIGlzyVF/preview
https://docs.google.com/file/d/1ojgZ4uUsJ9LfHe0Z9HSJR2lZCoJaPJWy/preview
https://docs.google.com/file/d/1QNwWlZQMtogDqWlKzrwKJNJUgsZ5IdnA/preview

Collecting real data: ALOHA

gravity
compensation

follower gripper

\
\ fs )
" s e - e
fa o £ -
4 :4)) L A L5 -
- T J 1
worms-eye camera ‘ leader gripper



https://docs.google.com/file/d/1NbyseNDLQY6djbUOM-7lvbJltyb-qfFA/preview

Collecting real data: ALOHA

Clean Restroom

= g ﬂlll
L ' ‘ ‘*‘ ﬁ i n.
. .{ /

! ;\ -_:/- \ __ \-\ '

10x speed |8 S y) &

>

/

31
Fu et al. Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation. arXiv:2401.02117


https://docs.google.com/file/d/1tY8LzAATp4ALpz7KUNkS8C1-X9dUrVUq/preview

Collecting real data: UMI

Chi et al. Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots. RSS 2024
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https://docs.google.com/file/d/1Y8vMPCpTTqtCIS0e_YdTf3Mj4kn1ki-f/preview
https://docs.google.com/file/d/1m62m-xyK-l_3BBh0tUlZkB7H8unTkf_f/preview

Adapting real data for movement: UMI on Legs

Ha et al. UMI on Legs: Making Manipulation Policies Mobile with Manipulation-Centric Whole-body Controllers. arXiv:2407.10353
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https://docs.google.com/file/d/1PQaI_MP3ar2_OsTd3IQKzKsFTk_9JoKY/preview
https://docs.google.com/file/d/1p-iLuZgACTkwXBt-o2yezTWt4PY1f7fQ/preview

Hybrid policy: RT-1

Training data: 130k episodes, 700 tasks, collected with 13
robots over 17 months. Inference time is 100ms, overall
system works at 3 Hz

RGB image, 300 x 300
Vi
)
el

Frontal view,
Pre-manipulation pose

(d) (e)

Brohan et al. RT-1: Robotics Transformer for Real-World Control at Scale. arXiv:2212.06817

34



Hybrid policy: RT-1

Transformer

2
g @gc EfficientNet-B3 TokenLearner decoder
(O] 2 it
€2 © &3 . . - . - g
s ES8 3 gt
74 3;
s s g s
=3 = = =
@ T T i
? » B ? g ?5 Teaars g : g cE
: ‘™ 8 o I B B
= = 3 g
2 2 2 2 ; 3 3
ré = o o = ’ :
=g "
O |a = — .
glls
% 5
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Hybrid policy: RT-1

Key results:

RT-1(35M parameters) successfully performs large number of instructions and
generalizes to new tasks and environments

Adding synthetic data for unseen tasks improves success rate

RT-1 may be used together with SayCan to solve long-horizon tasks

Skill Count  Description Example Instruction

Pick Object 130 Lift the object off the surface pick iced tea can

Move Ob ject Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry
Place Object Upright 8 Place an elongated object upright place water bottle upright

Knock Object Over 8 Knock an elongated object over knock redbull can over

Open Drawer 3 Open any of the cabinet drawers open the top drawer

Close Drawer 3 Close any of the cabinet drawers close the middle drawer

Place Object into Receptacle 84 Place an object into a receptacle place brown chip bag into white bowl
Pick Object from Receptacle 162 Pick an object up from a location and then pick green jalapeno chip bag from paper
and Place on the Counter place it on the counter bowl and place on counter
Section|6.3|and 6.4 tasks 9 Skills trained for realistic, long instructions  open the large glass jar of pistachios

pull napkin out of dispenser
grab scooper

Total 744

36



Diffusion-based policies

Capture well multimodal nature of high-dimensional action distribution
Scalable for high dim. output (sequence of actions)

(a) End-to-End Training (b) Evaluation
. = Environment
Expert Demonstrations . o

] Policy = >

g 1]

. - ? s

Perception | Decision a =

) o Perception | Decision
\
& i\\.
| Perception: Compact 3D Representations from Point Clouds \II Decision: Diffusion Policy |
l (a) Point Cloud Processing (b) Compact 3D Representations I | |
. Robot
| Single-view Point Cloud Points w/o Color MLP Projection 1 S(t)atz Conditioning |
(3, 64, 128, 256) (256, 64) I.
i Compact |
I 1 3D Repr. I
I E g I K K-1 Denoising 0 I
FPS § 2 3 3 Max § 2 Compact II L i xK-1) e
! £ 5 @ Pool £ i 3D Repr. | Noised Denoisedl
I = L i I Action Action I
S N |

L_---—-—___--_—__---_—-—--_—_—_—---_-_-’ L B B &R N N § &8 B N N &R _§B § N N N 3

Ze et al. 3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations. RSS 2024
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Transformer-based policies: Octo

Task Tokens

Put, the knife, on the, plate
v v v v

Language Encoder
PR

! C)C)C)C)
e e e e

ooce T

Observation Tokens

ey
)4 ® ® ©; ©O)

OoOoee 7.

Task Observation

Readout

Observation Readout  Observation

ﬂ Octo Transformer

T Pre-Training
| Finetuning

C_ORC JC RC )
Action Head |>a

New Observation
New Action Space

Fig. 2: Model architecture. Left: Octo tokenizes task descriptions (green) and input observations (blue) using a pretrained
language model and a lightweight CNN, respectively. Top: The transformer backbone processes the sequence of task and
observation tokens and produces readout tokens (purple) that get passed to output heads to produce actions. Bottom: The

block-wise attention structure of the transformer allows us to add or remove inputs and outputs during finetuning: for example,

we can add new observations (blue, dashed) or action spaces (purple, dashed) without modifying any pretrained parameters.

3 components:
tokenizers, transformer,
action head

t5-base (111M) for text tokeniz.
Octo-Small (27M) = ViT-S
Octo-Base (93M) = ViT-B

Pretrained on 128 TPUv4
(~ 200 A100) for 14 hours,
much longer than on ImageNet

May be finetuned
on 3090 in 4 hours

Best starting point for training
own manipulation policies

38



VLLMs as policies: RT-2

Aim to utilize general knowledge obtained from web data

Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control

Q: What is happening Q: What should the robot
in the image? do to <task>? A: ... RT—2
A grey donkey walks—3 }
down the street. N (
Q: Que puis-je faire avec ViT SO meaan

ces objets?

[Faire cuire un géteau.] )

e’ Q: What should the robot
{ > do to <task>?
/ “q -

[ l ] AT=[0.1,-0.2,0]
A: 132114128525 156 | —™™™™™™™ —_10° 95° -
De-Tokenize AR=[10, 25’ -7]

Robot Action

“ [ATranslation = [0.1, -0.2, 0] t
ARotation = [10°, 255 -7°] Co-Fine-Tune

Brohan et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. arXiv:2307.15818

Deploy :

Closed-Loop
Robot Control

Put the strawberry
into the correct bowl

Pick the nearly falling bag

Pick object that is different

39



R I — 2 [ Push the ketchup to the blue cube } { Push the blue cube to the tabasco }
)|

Key idea: reuse knowledge from LLM
Results:

-  better generalization to unseen objects
and environments

- symbol understanding:
move apple to 3

- reasoning:
move apple to cup with same color,
move X near the sum of two plus one,
mueve la manzana al vaso verde

-~ human recognition:
move the coke can to the person with
glasses

pick up the bag
about to fall
off the table

move apple to

place orange in
Denver Nuggets

into the correct ;
matching bowl

pick robot
bowl

put strawberry }

move cup to the
wine bottle

pick animal with
different colour

move soccer ball
to basketball

move redbull can

to H

move banana to
Germany

move coke can to
X

move coke can to
Taylor Swift

move bag to
Google

the sum of two
plus one

pick land animal

’ ‘ move banana to




Prompt:

Given <img> Instruction:
Bring me a drink.
Prediction:

Plan: pick 7up can.
Action: 1 143 129 123 145

114 115 127

Prompt:

Given <img> Instruction:
Move all the objects
together.

Prediction:

Plan: move green can near
green rice chip bag.
Action: 1 128 126 127 135

123/:119 127

RT-2 simple chain of thought

Prompt:

Given <img> Instruction:
Pick the object that is
different from all other
objects

Prediction:

Plan: pick rxbar
chocolate. Action: 1 128
129 125131 125 128 127

Prompt:

Given <img> Instruction:
Move the green objects
together.

Prediction:

Plan: move green can near
green rice chip bag.
Action: 1 130 129 121 131
127 128 127

Prompt:

Given <img> I need to
hammer a nail, what
object from the scene
might be useful?
Prediction:

Rocks. Action: 1 129 138
122 132 135 106 127

-

i

‘ |

Figure 7 | Rollouts of RT-2 with chain-of-thought reasoning, where RT-2 generates both a plan and an action.
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VLLMs as policies: OpenVLA

Large-Scale Robot — OpenVLA — Closed-Loop

Training Data

Vision-Language-Action Model Robot Control Policy

User: Wipe the table.

Fine-tune VLM w/ Robot Actions: ()
777777777777777777 1 OpenVLA:

[Ax, A8, AGrip] = ...

Y

Fully
Open-Source

—

Llama 2 7B

@

970k Robot ul V[
Episodes § Y ‘

‘ O
—p
| T,

2

g Data
w _ Weights

‘ ) coce

Kim et al. OpenVLA: An Open-Source Vision-Language-Action Model. arXiv:2406.09246



OpenVLA

Pretrained on 64 A100 for 14 days, finetuned on 8 A100 for 5-15 hours
Runs at 6Hz on 4090 in bfloat16 format

OpenVLA [ Action De-Tokenizer Jﬁ
t ot 0t A
‘ @O X
3 AO
| Llama 2 7B J AGrip
7D Robot
Input Image @ BC NC B¢ NG OO NGONEGONEDNEW) Action
U A ) A R S . }

2 »
Q MLP Projector ] [ Llama Tokenizer ]

yDinov2 I

1 .y

“Put eggplant
in bow!”

Language Instruction
> “What should the robot do to {task}? A:”

Figure 2: OpenVLA model architecture. Given an image observation and a language instruction, the model
predicts 7-dimensional robot control actions. The architecture consists of three key components: (1) a vision
encoder that concatenates Dino V2 [25] and SigLIP [77] features, (2) a projector that maps visual features to
the language embedding space, and (3) the LLM backbone, a Llama 2 7B-parameter large language model [10].
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OpenVLA

87.0 !
80 70.6 76.7
g
et 60.0
& 60 50.6 52.0 55.0
© )
< 1
8 40.0
S a0 38.8 36 3 :
o
F 29.0 26.7 30.0
5 o 183 20.0 2.0, 200
8.0 75 10.0
o L 0.0
Average Visual Generalization Motion Generalization Physical Generalization ~ Semantic Generalization Language Grounding
(Ug‘sselfgct‘)oar(;k%r;l;g?s, (Unseen object positions & (Unseen object sizes & (Unseen objects, instructions, Ab!i;(yeé?ﬂ;ndainn\pi::}agtsa(;beject
RT-1-X appearances) orientations) shapes) & concepts from the Internet) prompt)
mmm Octo
RT-2-X

mmm OpenVLA (ours)

Put Yellow Corn

Stack Blue Cup
on Pink Plate

on Pink Cup

Figure 3: BridgeData V2 WidowX robot evaluation tasks and results. We evaluate OpenVLA and prior
state-of-the-art generalist robot policies on a comprehensive suite of tasks covering several axes of generalization,
as well as tasks that specifically assess language conditioning ability. OpenVLA achieves highest overall perfor-
mance and even outperforms closed-source model RT-2-X in all categories except for semantic generalization.

Average success rates =+ StdErr are computed across 170 total rollouts per approach. See Table 4 for detailed
results.

Table 1: Parameter-efficient fine-tuning evaluation. LoRA fine-
tuning [26] achieves the best performance-compute trade-off, match-
ing full fine-tuning performance while training only 1.4% of the
model parameters. Mean success rate + StdErr is computed across
33 rollouts per approach on select Franka-Tabletop tasks.

*: Sharded across 2 GPUs with FSDP [75].

Strategy Success Rate  Train Params (x10°)  VRAM (batch 16)
Full FT 69.7+ 7.2 % 7,188.1 163.3 GB*
Lastlayeronly 303 £6.1 % 465.1 51.4GB
Frozen vision 47.0+6.9 % 6,760.4 156.2 GB*
Sandwich 62.1+79% 914.2 64.0 GB
LoRA, rank=32  68.2 + 7.5% 97.6 59.7 GB
rank=64  68.2 + 7.8% 195.2 60.5 GB

8x speedup when training
with LoRA (but we got
only 3x)

44



OpenVLA

Future research directions:

VLA model with multi-image/videos and depth observations

Real-time inference (50Hz). After int4-quantization the model
runs only at 3Hz

Performance improvement (now SR < 90%)
Co-training for VQA and action prediction is to be explored






SPOC

“Navigate to a basketball” “Locate a laptop”

in the S C lo plant
m

d1dOM 1v3ad

SPOC'’s manipulation camera view
while picking up the mug

47
Ehsani et al. SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World. CVPR 2024



SPOC

Discr. actions: move base (£20cm), rotate base (x6°,230°), move arm (x, z) (x2cm, £10cm)

Mgoa,(g) (Mgoats dyisuat

MLP
Mgoal

9 | Mgoar dgoar)

Text Encoder
Egoat e

Fetch spray bottle
to living room

i

Transformer Encoder
El'i.\‘uul

(Mpatcn, dvisuat)

MLP
M;

image

(Mparcns ll:lnuu:‘ )

Image Encoder

Eimage &

("patcn, dvisuat)

MLP
Mimage

t
frnanip (Mpatch, dimage)

Image Encoder

P
“image *

Ft

nav

Ft

manip

(dyisuat)

Predicted Actions

cross-attention

Mgaal (€))

Time

Previous Actions

Visual Features

at—Z at—l at at+1 at+2
Tr. r Decoder

t—2 t—1 t t+1 t+2

at-3 at-Z at—l at at+1

vt-—Z vt—l vt Ut+1 vt+2
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SPOC

Data:

—~  AI2THOR simulator
- 40k household objects from Objaverse

dataset P ;
- Use ProcTHOR to procedurally generate 1=j7 - : E L

200k houses (1-8 rooms) ' | bathroom -

. . N— kitchen- living-
Trajectories: —— Kitchen living-room . A0
bathroom room

-~ Navigation: go to target using approximation

of shortest path : o8

bedroom

- Manipulation: navigate to object, then
iteratively minimize distance between robot s s
and object

- Room visitation: calculate center of house, 2bed i bath — — Toroom-3-bed
then navigate to all rooms via shortest paths bedroom-room?
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SPOC benchmarks

CHORES:

navigation

object recognition
object manipulation
exploration

CHORES Nav:

open voc. instruction following
object affordance

scene understanding

object comparison

Task Description & Example

OBINAV Locate an object category: “find a mug”

PickUp Pick up a specified object in agent line of sight: “pick up a mug”

FETCH Find and pick up an object: “locate a mug and pick up that mug”

RoOOMVISIT| Traverse the house. “Visit every room in this 5-room house. Indi-
cate when you have seen a new room and when you are done.”

Table 1. CHORES tasks.

Task Target Description & Example

OBJINAV Object’s category: “vase”

OBJNAVAFFORD Object’s possible uses: “a container that can best be

used for holding fresh flowers decoratively”

OBJNAVLOCALREF Object’s nearby objects: “a vase near a tennis racket

and a basketball”
OBJNAVRELATTR Object category comparative attribute: “the smallest
vase in the bedroom”
OBJNAVROOM Object’s room type: “vase in the living room”
OBINAVDESC Open vocab instance description: “the brown vase

painted orange with a bird on the side”

ROOMNAV

Type of room: “bedroom”

Table 2. CHORESNAV tasks. The full task specification also in-

cludes a navigation verb, such as “Search for a vase”.
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SPOC

Key results:

Imitation learning outperforms RL
in speed (3500 FPS vs 175 FPS) and
quality
Architecture scales well to multiple tasks
Object detection means a lot

Transformer encoders and decoders boost
quality a lot

Long horizon tasks require long context windows
(100 timesteps here vs 6 timesteps in RT-1)
SPOC generalizes to real world

Beickimark | Model Trainin OBJINAV PickUP FETCH ROOMVISIT Avg
GG o 2 € Success SEL  %Rooms | Success SEL %Rooms | Success SEL %Rooms | Success SEL  %Rooms | Success
EmbSigLIP* [38] | Single-task RL 36.5 24.5 422 71.9 52.9 30.3 0.0 0.0 50.5 16.5 11.9 44.6 il
CHEREN S SpoC-1-task Single-task IL 57.0 46.2 51.5 84.2 81.0 30.3 158 12.6 48.1 43.7 40.4 81.2 50.0
SpocC Multi-task IL 55.0 422 56.3 90.1 86.9 30.3 14.0 10.5 49.3 40.5 35.7 81.1 49.9
SpocC w/ GT Det | Multi-task IL 85.0 61.4 58.7 91.2 87.9 30.3 47.3 35.6 61.6 36.7 33.7 79.3 65.0
Fiidhatl, SpocC Multi-task IL 3347 2581 53.7 75.1 69.1 31.5 10.6 8.1 429 35.0 332 77.8 38.6
SPoC w/ GT Det | Multi-task IL 83.9 58.0 64.0 78.0 1547 31 48.6 38.3 60.0 42.0 39.1 83.1 63.1
Model OBJINAV PickUp FETCH ROOMVISIT | Average
SpocC 50.0 46.7 (66.7) | 11.1 (33.3) 50.0 39.5
SPoC w/ DETIC 83.3 46.7 (86.7) | 44.4 (44.4) 50.0 56.1
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SPOC

Find a Chair in the kitchen Go to a headset and grab that headset

Left: skipping all chairs to find one in the kitchen
Right: repositioning itself to find a location where headset is reachable



SPOC

Navigate to the highest fruit in the kitchen Locate a computer on a sofa

Left: looking for all fruits in the kitchen and then navigating to highest
Right: looking for a sofa which has a laptop on it






RoboCoT

Language Input

open the door
Chain-of-Thought

1. the robot hand approaches
the door’s handle
2

\
zi
\

z E{z

Sparse Failure Guidance

the robot hand is stuck at
the left and top of the door.

max exp(z, - Z:/T) #

| success

W J0 Tii+T =
UU

max exp(z,, z/1)+ Y,

z€{z}

Z. E{z }exp(z‘ll zt/T) :

I

Analysis Template

Consider the following
image:

Image: [Image 1]

this is a simulation
environment. In this
image, the door of the
box is open. We define
it when the door is open,
the output is 1.
Otherwise, the output is

" Y,

Labeling Template

Image: [Final Observation]

What is the output of this
image?

A 4

Reward Design

Zhang et al. Learning Manipulation Skills through Robot Chain-of-Thought with Sparse Failure Guidance. arXiv:2405.13573

Self Imitation, i.e., Success Regularization



Eureka

@& Environment Code & Coding LLM
3 def compute_reward(
‘ Q (GPT 4) q obj_rot, obj_angvel, ...
class ShadowHandPenSpin(VecTask): ~> - )i
def compute_observations(self): - Reward ,;f.,;lngular Velocity penaliy
::{;'gﬁ"gg:e: o Candidate av_norm = torch.norm(obj_angvel)
self‘obj—rot = - X av_penalty = torch.where(
self.obj_linvel = Sampling av_norm > 2.0,
self.obj_angvel = ) torch.exp(av_norm - 2.0)
self.tgt_pos

self.tgt_rot
Zo
B 2K

self.fingertip_state = ...

self.fingertip_pos = ... Query with E u re ka GPU-

self.compute_full_state() Feedback Accelerated RL

def compute_full_state(self):

We trained a RL policy using the
provided reward function code...

av_penalty: ['0.02', '0.05"', Q
> g o '9.05"; "8:04', '9.03°;, ...]
TaSk DGSCI’IptIOH success_rate: ['0.00', '0.38',
'1.57', '3.01', '3.95', ...] Reward
Please carefully analyze the policy .
To make the shadow hand spin the pen feedback and provide a new, improved ReﬂeCtlon
to a target orientation reward function...

56
Ma et al. Eureka: Human-Level Reward Design via Coding Large Language Models. ICLR 2024



Eureka

<

+ o+ 4+ o+ o+ o+

def compute_reward(object_rot, goal_rot, object_angvel, object_pos, fingertip_pos):

# Rotation reward

rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2

rotation_reward_temp = 20.0

rotation_reward_temp = 30.0 Changing hyperparameter
rotation_reward = torch.exp(-rotation_reward_temp * rot_diff)

# Distance reward

min_distance_temp = 10.0

min_distance = torch.min(torch.norm(fingertip_pos - object_pos[:, Nonel, dim=2), dim=1).values
distance_reward = min_distance

uncapped_distance_reward = torch.exp(-min_distance_temp * min_distance)

distance_reward = torch.clamp(uncapped_distance_reward, 0.0, 1.0) Changing functional form

total_reward = rotation_reward + distance_reward
# Angular velocity penalty Adding new component
angvel_norm = torch.norm(object_angvel, dim=1)
angvel_threshold = 0.5
angvel_penalty_temp = 5.0
angular_velocity_penalty = torch.where(angvel_norm > angvel_threshold,
torch.exp(-angvel_penalty_temp * (angvel_norm - angvel_threshold)), torch.zeros_like(angvel_norm))

total_reward = 0.5 * rotation_reward + 0.3 * distance_reward - 0.2 * angular_velocity_penalty
reward_components = {
"rotation_reward": rotation_reward,

"distance_reward": distance_reward,
"angular_velocity_penalty": angular_velocity_penalty,

return total_reward, reward_components
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Eureka

Key results of the method:

- outperforms human reward on a wide
range of environments
- consistently improves over time

- generates novel rewards compared to
human rewards
- improves from human feedback
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https://docs.google.com/file/d/1gtUS-nmqSC0Y-U2XtJe7mZS4rnFS5gc_/preview

DrEureka

Reward Function

Task + Safety Instruction

To make the gol quadruped balance on
the top of the ball. The quadruped
should maintain a z-position of 2 *
ball_radius or higher.

Please keep in mind that the

policy will be deployed on a robot in
the real world. As such, you should
prioritize safety, robustness...

Ma et al. DrEureka: Language Model Guided Sim-To-Real Transfer. RSS 2024

Eureka Reward Design
Initial Policy Learning
>
D
[ @
L ________4 Policy
& —
0000 4
[ 2 ‘
i

E Reward-Aware Domain

Physics Prior ” Randomization

Gravity

DO
o
-
v D

¢ DrEureka

Final Sim2Real
Policy Learning
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DrEureka

1X speed

60


https://docs.google.com/file/d/1dHMb0xdrbFdJuFTm9PmhXcaaLo-oOWz3/preview




(Some) Open questions

Unified and effective evaluation
Sim-to-real gap
Pre-training fundamental models for robotics

Efficient collection and usage of human
demonstration data

High inference time of foundation models
Long-horizon task planning
Life-long learning

Ensuring robustness and safety of deployed models



Conclusion

Embodied Al is a research area at the
intersection of NLP, CV and RL

Embodied agent has an embodiment and Al
software

EAI models enable robot to perceive the
world, talk, reason and act

Evaluation of EAl models in general is a very
challenging task

Despite a decade of the rapid progress in
NLP and CV, EAI systems (understanding
the world, planning and acting) are in the
beginning of their development



