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What is Embodied AI?
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Embodied AI

Goal of EAI is to create intelligent agents (i.e. 
robots) with physical embodiment that can 
solve challenging tasks. Such agents should 
be able to:

→ Perceive: see, listen, touch their 
environment using various sensors and 
extract meaningful information

→ Talk: hold a natural dialog grounded in 
their environment

→ Reason: consider and plan for the 
long-term consequences of their actions

→ Act: navigate and interact with their 
environment to accomplish goals
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General-purpose robots
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Разделитель с названием раздела.
Номер раздела можно указать по желанию.
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Evaluation: sim and real
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Static benchmarks for CV/NLP
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Yue et al. MMMU A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI. CVPR 2024

A lot of CV/NLP benchmarks are available for various tasks:
→ usually very fast evaluation
→ reproducible
→ cheap
→ have big domain shift in relation to robotics data
→ may be only a proxy metric/guidance for choosing baseline models



Arena for evaluating VLLMs
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Lu et al. WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences. arXiv:2406.11069 



Scan-based env:
→ relatively fast to collect
→ realistic look
→ very fast to render
→ limited number of supported tasks 

CAD-based env:
→ hard to prepare
→ realistic look requires a lot of effort
→ may be challenging to render
→ all tasks are supported

Simulator: static scans vs CAD

Szot et al. Habitat 2.0 Training Home Assistants to Rearrange their Habitat. NeurIPS 2021. 
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World model is a special case of simulators. 
Usually these models allow to obtain sensor 
data conditioned on actions and additional 
input

Simulator: world model

Bruce et al. Genie: Generative Interactive Environments. arXiv:2402.15391
Zhu et al. IRASim: Learning Interactive Real-Robot Action Simulators. arXiv:2406.14540
Hu et al. GAIA1 A Generative World Model for Autonomous Driving. arXiv:2309.17080
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https://docs.google.com/file/d/11mgRmo8LhJ7ES95YvZWfrAzrWffEZGHz/preview
https://docs.google.com/file/d/1xxvRlzMOi4i2nYieDsClFC5CDVtoJLQG/preview


→ the only evaluation that really matters
→ very slow
→ very expensive and technically complex
→ scales badly

Real-world evaluation
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Fu et al. Mobile ALOHA Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation. arXiv:2401.02117

https://docs.google.com/file/d/1jMSxU0Gz38-TdE-eAfuefuEuxcne-z7r/preview
https://docs.google.com/file/d/1wRIoGneM91pkkPCDQsjbVIA3QcgdosGz/preview
https://docs.google.com/file/d/1qIZefoQkUBVm0Oc4zevZgXioMwWSYZ-l/preview


Comparison of evaluation methods
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Static
benchmarks

Arena End-to-end 
sim

End-to-end 
real

Relevance Low Medium Medium High

Safety High High High Low

Speed High Medium Medium Low

Cheapness High Medium Medium Low

Reproducibility High High Medium Low



Разделитель с названием раздела.
Номер раздела можно указать по желанию.
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Understanding the world
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3D reconstruction SLAM
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3D segmentation
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3D scene representation (i.e. point cloud) is segmented into a fixed set of classes

Kolodiazhnyi et al.  OneFormer3D One Transformer for Unified Point Cloud Segmentation. CVPR 2024



Embodied question answering
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Agent has to answer questions about environment. Two scenarios are possible:
→ pre-recorded video stream
→ fully interactive mode: agent can freely explore environment

Evaluation of answers is done with GPT4 or via human evaluation

Majumdar et al. OpenEQA Embodied Question Answering in the Era of Foundation Models. CVPR 2024. 



Разделитель с названием раздела.
Номер раздела можно указать по желанию.
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Planning
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Planning with ground truth 

18

Planning is decomposing high-level task into sequence of sub-tasks. Simplest case of 
planning is planning with ground truth:

→ obtaining ground truth is laborious
→ quality may be measured by comparing sequences (accuracy, LCS length or GPT score)

Zhang et al. MFEETP A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning. arXiv:2407.05047



Open-world planning
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Wang et al. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. NeurIPS 2023



Open-world planning
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Two challenges arise in open-world 
planning:

→ complex sub-task dependency that 
may be unknown in advance

→ sub-task feasibility depends on the 
(complex/unobservable) state of the 
world 

Therefore:

→ we canʼt benchmark planning on fixed 
ground truth sequences, running in 
simulator and measuring success rate 
SR) is the only option

→ the planning module has to be 
adaptable and be able to modify the 
plan

Wang et al. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. NeurIPS 2023



Describe, Explain, Plan and Select DEPS
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Describe, Explain, Plan and Select DEPS

Selector ranks candidate skills according to trained value/affordance function
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Describe, Explain, Plan and Select DEPS
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Describe, Explain, Plan and Select DEPS
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Разделитель с названием раздела.
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Acting: manipulation
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Manipulation
Given language instruction and observations from sensors, 
output action/sequence of actions. Modern notable approaches 
are based on:
→ hybrid models
→ diffusion models
→ transformers
→ VLLMs
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Towards ImageNet for manipulation: Open XEmbodiment
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Open XEmbodiment Collaboration. Open XEmbodiment: Robotic Learning Datasets and RTX Models. arXiv:2310.08864



Open XEmbodiment
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Open XEmbodiment

29

https://docs.google.com/file/d/1bKJZ8b_KwZQKQIQH0NcykgvPoL24UmVV/preview
https://docs.google.com/file/d/1iu1SimueWr16777KfLOXoZk4p7zgxgQS/preview
https://docs.google.com/file/d/1PzzrspWyL8ExU4kpDXocORyAKz4ikMom/preview
https://docs.google.com/file/d/1-EUvP6QSPXpdoxmhy0TXfpbRDIGlzyVF/preview
https://docs.google.com/file/d/1ojgZ4uUsJ9LfHe0Z9HSJR2lZCoJaPJWy/preview
https://docs.google.com/file/d/1QNwWlZQMtogDqWlKzrwKJNJUgsZ5IdnA/preview


Collecting real data: ALOHA
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Aldaco et al. ALOHA 2 An Enhanced Low-Cost Hardware for Bimanual Teleoperation

https://docs.google.com/file/d/1NbyseNDLQY6djbUOM-7lvbJltyb-qfFA/preview


Collecting real data: ALOHA
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Fu et al. Mobile ALOHA Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation. arXiv:2401.02117

https://docs.google.com/file/d/1tY8LzAATp4ALpz7KUNkS8C1-X9dUrVUq/preview


Collecting real data: UMI
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Chi et al. Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots. RSS 2024

https://docs.google.com/file/d/1Y8vMPCpTTqtCIS0e_YdTf3Mj4kn1ki-f/preview
https://docs.google.com/file/d/1m62m-xyK-l_3BBh0tUlZkB7H8unTkf_f/preview


Adapting real data for movement: UMI on Legs
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Ha et al. UMI on Legs: Making Manipulation Policies Mobile with Manipulation-Centric Whole-body Controllers. arXiv:2407.10353

https://docs.google.com/file/d/1PQaI_MP3ar2_OsTd3IQKzKsFTk_9JoKY/preview
https://docs.google.com/file/d/1p-iLuZgACTkwXBt-o2yezTWt4PY1f7fQ/preview


Hybrid policy: RT1

Training data: 130k episodes, 700 tasks, collected with 13 
robots over 17 months. Inference time is 100ms, overall 
system works at 3 Hz
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Brohan et al. RT1 Robotics Transformer for Real-World Control at Scale. arXiv:2212.06817
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EfficientNet-B3 TokenLearner
Transformer

decoder

Hybrid policy: RT1



Hybrid policy: RT1
Key results:

→ RT1 35M parameters) successfully performs large number of instructions and 
generalizes to new tasks and environments

→ Adding synthetic data for unseen tasks improves success rate
→ RT1 may be used together with SayCan to solve long-horizon tasks
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Diffusion-based policies
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Ze et al. 3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations. RSS 2024

Capture well multimodal nature of high-dimensional action distribution
Scalable for high dim. output (sequence of actions)



Transformer-based policies: Octo

38

3 components:
tokenizers, transformer, 
action head
t5-base 111M) for text tokeniz.
Octo-Small 27M ≈ ViTS
Octo-Base 93M ≈ ViTB

Pretrained on 128 TPUv4
(≈ 200 A100) for 14 hours,
much longer than on ImageNet

May be finetuned
on 3090 in 4 hours

Best starting point for training 
own manipulation policies



VLLMs as policies: RT2
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Brohan et al. RT2 Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. arXiv:2307.15818

Aim to utilize general knowledge obtained from web data



RT2
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Key idea: reuse knowledge from LLM
Results:

→ better generalization to unseen objects 
and environments

→ symbol understanding:
move apple to 3

→ reasoning:
move apple to cup with same color, 
move X near the sum of two plus one, 
mueve la manzana al vaso verde

→ human recognition:
move the coke can to the person with 
glasses



RT2 simple chain of thought 
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VLLMs as policies: OpenVLA
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Kim et al. OpenVLA An Open-Source Vision-Language-Action Model. arXiv:2406.09246



OpenVLA
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Pretrained on 64 A100 for 14 days, finetuned on 8 A100 for 515 hours
Runs at 6Hz on 4090 in bfloat16 format



OpenVLA
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8x speedup when training 
with LoRA (but we got 
only 3x)



OpenVLA
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Future research directions:

→ VLA model with multi-image/videos and depth observations
→ Real-time inference 50Hz. After int4-quantization the model 

runs only at 3Hz
→ Performance improvement (now SR  90%
→ Co-training for VQA and action prediction is to be explored



Разделитель с названием раздела.
Номер раздела можно указать по желанию.

ИНСТРУКЦИИ Здесь разные паттерны из точек

Acting: navigation
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SPOC
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Ehsani et al. SPOC Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World. CVPR 2024



SPOC
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Discr. actions: move base 20cm, rotate base 6°,30°), move arm (x, z) 2cm, 10cm)



SPOC
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Data:

→ AI2THOR simulator
→ 40k household objects from Objaverse 

dataset
→ Use ProcTHOR to procedurally generate 

200k houses 18 rooms)

Trajectories:

→ Navigation: go to target using approximation 
of shortest path

→ Manipulation: navigate to object, then 
iteratively minimize distance between robot 
and object

→ Room visitation: calculate center of house, 
then navigate to all rooms via shortest paths



SPOC benchmarks
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CHORES

→ navigation
→ object recognition
→ object manipulation
→ exploration

CHORES Nav:

→ open voc. instruction following
→ object affordance
→ scene understanding
→ object comparison



SPOC
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Key results:

→ Imitation learning outperforms RL
in speed 3500 FPS vs 175 FPS) and 
quality

→ Architecture scales well to multiple tasks
→ Object detection means a lot

→ Transformer encoders and decoders boost 
quality a lot

→ Long horizon tasks require long context windows
100 timesteps here vs 6 timesteps in RT1

→ SPOC generalizes to real world



SPOC
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Left: skipping all chairs to find one in the kitchen
Right: repositioning itself to find a location where headset is reachable



SPOC
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Left: looking for all fruits in the kitchen and then navigating to highest
Right: looking for a sofa which has a laptop on it



Разделитель с названием раздела.
Номер раздела можно указать по желанию.
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Reward function
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RoboCoT
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Zhang et al. Learning Manipulation Skills through Robot Chain-of-Thought with Sparse Failure Guidance. arXiv:2405.13573



Eureka
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Ma et al. Eureka: Human-Level Reward Design via Coding Large Language Models. ICLR 2024



Eureka

57



Eureka
Key results of the method:

→ outperforms human reward on a wide 
range of environments

→ consistently improves over time

58

→ generates novel rewards compared to 
human rewards

→ improves from human feedback

https://docs.google.com/file/d/1gtUS-nmqSC0Y-U2XtJe7mZS4rnFS5gc_/preview


DrEureka
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Ma et al. DrEureka: Language Model Guided Sim-To-Real Transfer. RSS 2024 



DrEureka
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https://docs.google.com/file/d/1dHMb0xdrbFdJuFTm9PmhXcaaLo-oOWz3/preview


Разделитель с названием раздела.
Номер раздела можно указать по желанию.
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Open questions
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Some Open questions

→ Unified and effective evaluation

→ Sim-to-real gap

→ Pre-training fundamental models for robotics

→ Efficient collection and usage of human 
demonstration data

→ High inference time of foundation models

→ Long-horizon task planning

→ Life-long learning

→ Ensuring robustness and safety of deployed models
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Conclusion

→ Embodied AI is a research area at the 
intersection of NLP, CV and RL

→ Embodied agent has an embodiment and AI 
software

→ EAI models enable robot to perceive the 
world, talk, reason and act

→ Evaluation of EAI models in general is a very 
challenging task

→ Despite a decade of the rapid progress in 
NLP and CV, EAI systems (understanding 
the world, planning and acting) are in the 
beginning of their development 
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