

Seminar 4: Action modality, LLM/VLM agents

Supplementary slides to [Google Colab notebook](#)

[Andrey Spiridonov](#), Zinkovich Viktoriia

Recap of previous seminar

1. Deep Fusion

deeply fuses multimodal inputs
within internal layers



1.1. Standard Cross-Attention (SC-DF)

OpenFlamingo

- perceiver resampler
- cross-attention
- tanh gating

1.2. Custom Layers (CL-DF)

MoE-LLaVA

- vision encoder MLP
- MoE layer
- Router

2. Early Fusion

multimodal inputs are fed to the
model rather to its internals

2.1. Non-tokenized (NT-EF)

Qwen-VL

- 3 stage pre-training
- **encoder** for vision modality

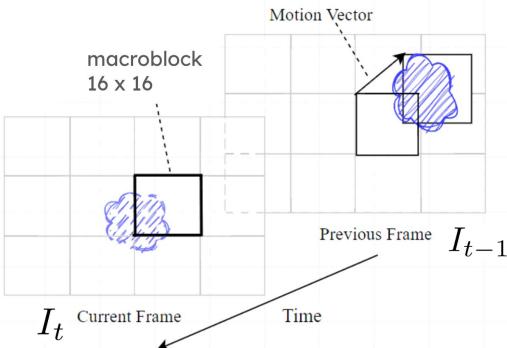
2.2. Tokenized (T-EF)

LaVIT

- **tokenizer** for visual modality
- token selector & merger

Recap of previous seminar

Video-LaVIT (Feb 2024) – employ the **MPEG-4** (1991) to divide the image to **keyframes** (primary semantics) and **motion** (temporal evolvement)



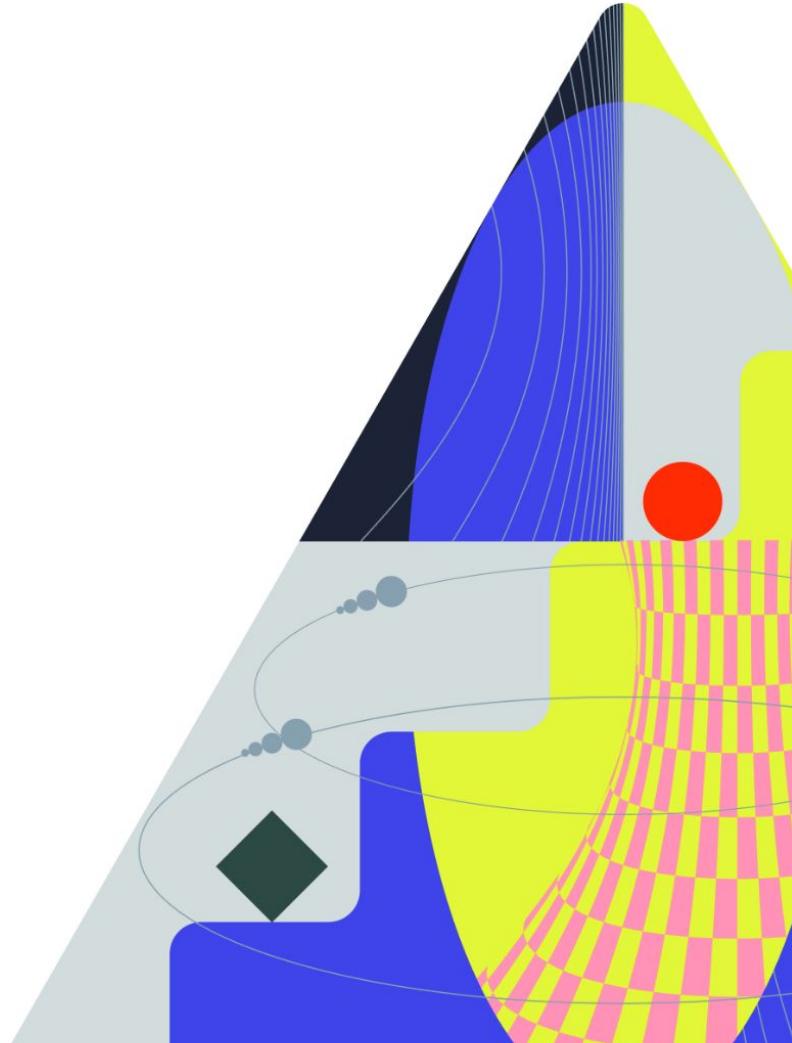
Text2Video

Image2Video

Part 1

Octo model

Open-Source Generalist
Robot Policy

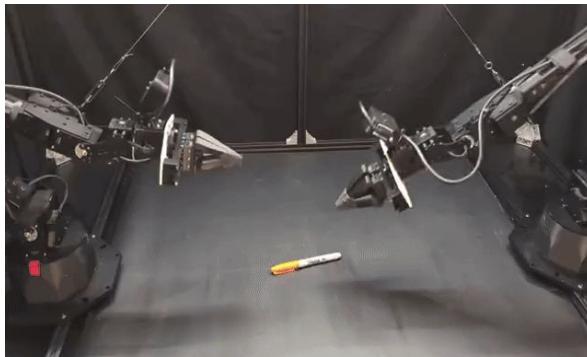


Octo: Introduction (May 2024)

Octo trains policies on robot datasets assembled across ***multiple embodiments*** and trained on a larger and **more diverse** robot data mix

Octo: Introduction (May 2024)

Octo trains policies on robot datasets assembled across ***multiple embodiments*** and trained on a larger and **more diverse** robot data mix

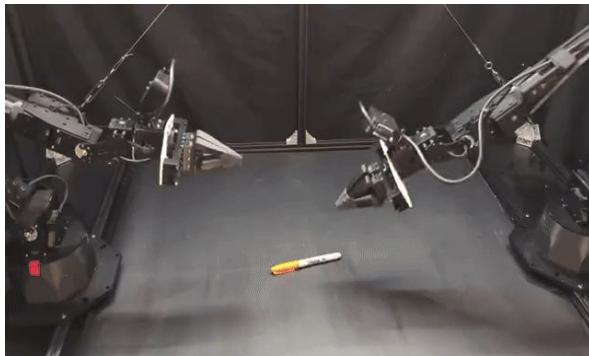


dual-arm robot, Stanford
Aloha

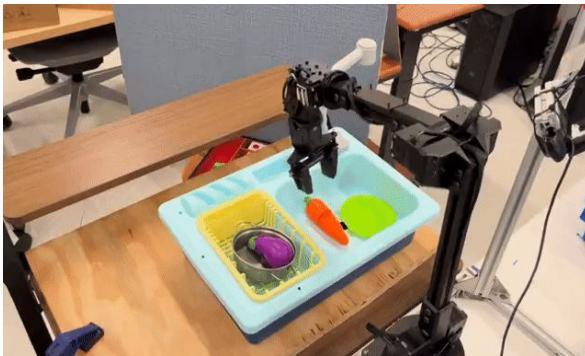
[1] Dibya Ghosh et al. **Octo**: An Open-Source Generalist Robot Policy. RSS, Oct 2024. [\[link\]](#)

Octo: Introduction (May 2024)

Octo trains policies on robot datasets assembled across ***multiple embodiments*** and trained on a larger and **more diverse** robot data mix



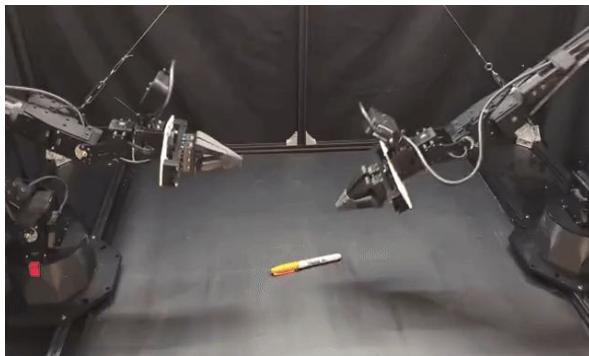
dual-arm robot, Stanford
Aloha



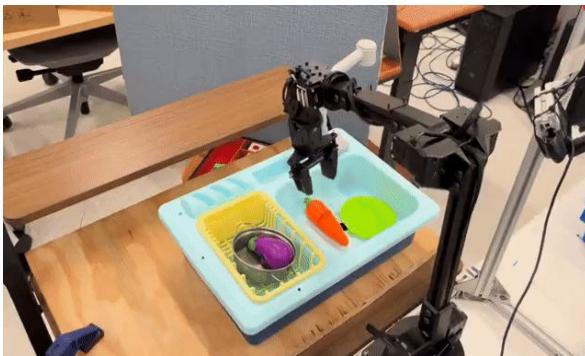
part of the Bridge Dataset
WidowX BridgeV2

Octo: Introduction (May 2024)

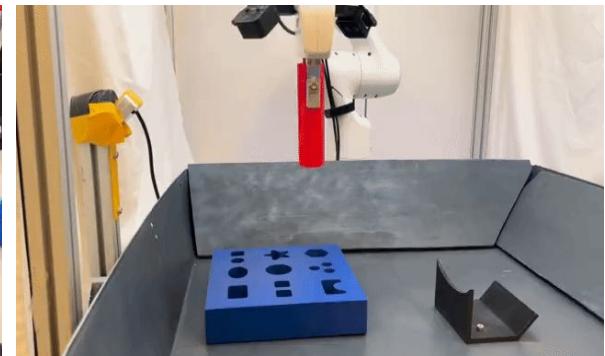
Octo trains policies on robot datasets assembled across ***multiple embodiments*** and trained on a larger and **more diverse** robot data mix



dual-arm robot, Stanford
Aloha



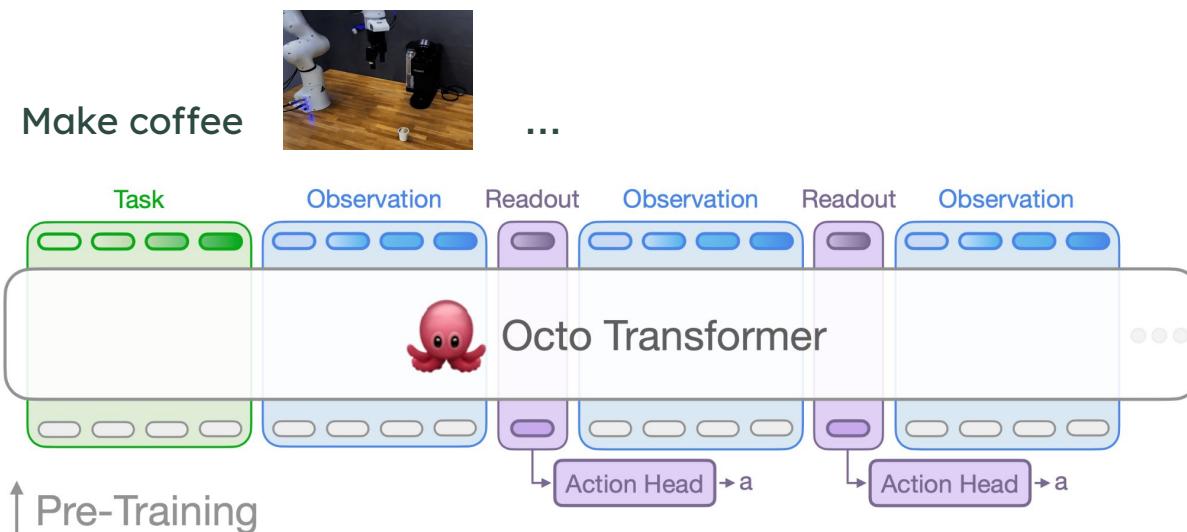
part of the Bridge Dataset
WidowX BridgeV2



Functional manipulation benchmark
Berkley Peg insertion

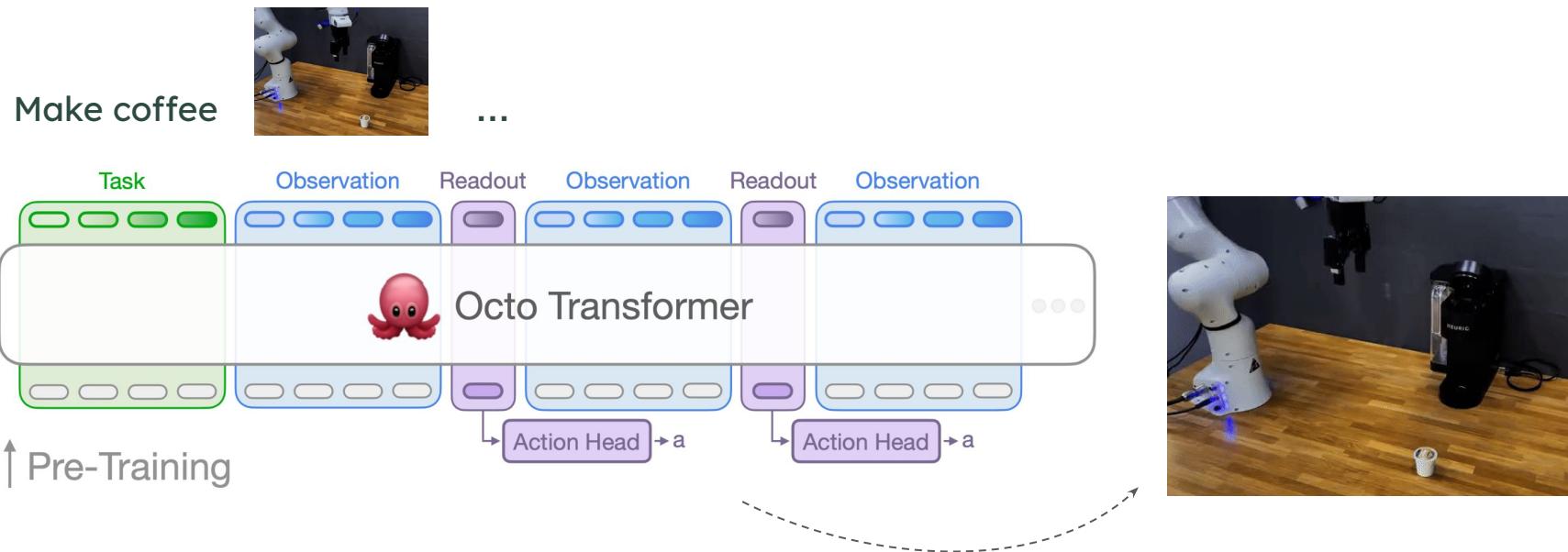
Octo pre-training: “Tokenizers”

Core model is **transformer architecture** that maps arbitrary input tokens (created from observations and tasks) to output tokens (then decoded into actions)



Octo pre-training: “Tokenizers”

Core model is **transformer architecture** that maps arbitrary input tokens (created from observations and tasks) to output tokens (then decoded into actions)

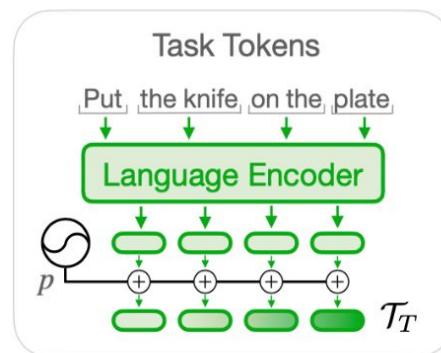


Octo pre-training: “Tokenizers”

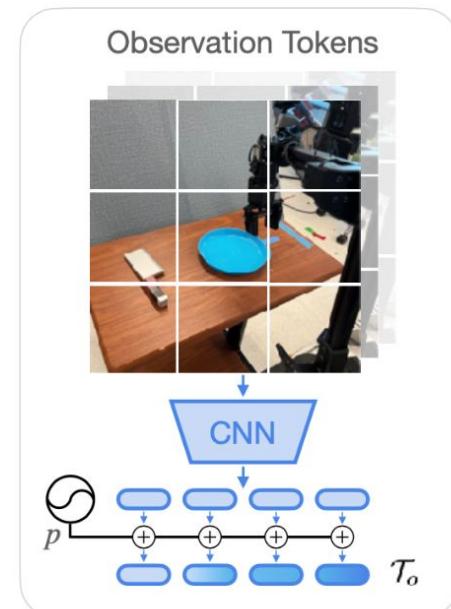
Obtain tokens through **modality-specific tokenizers** (actually “embeddings”, not “tokens”) and arrange all them sequentially $[\mathcal{T}_T, \mathcal{T}_{o,1}, \mathcal{T}_{o,2}, \dots]$

t5-base [111M]

passed through a pretrained transformer that produces a sequence of **language embedding tokens**

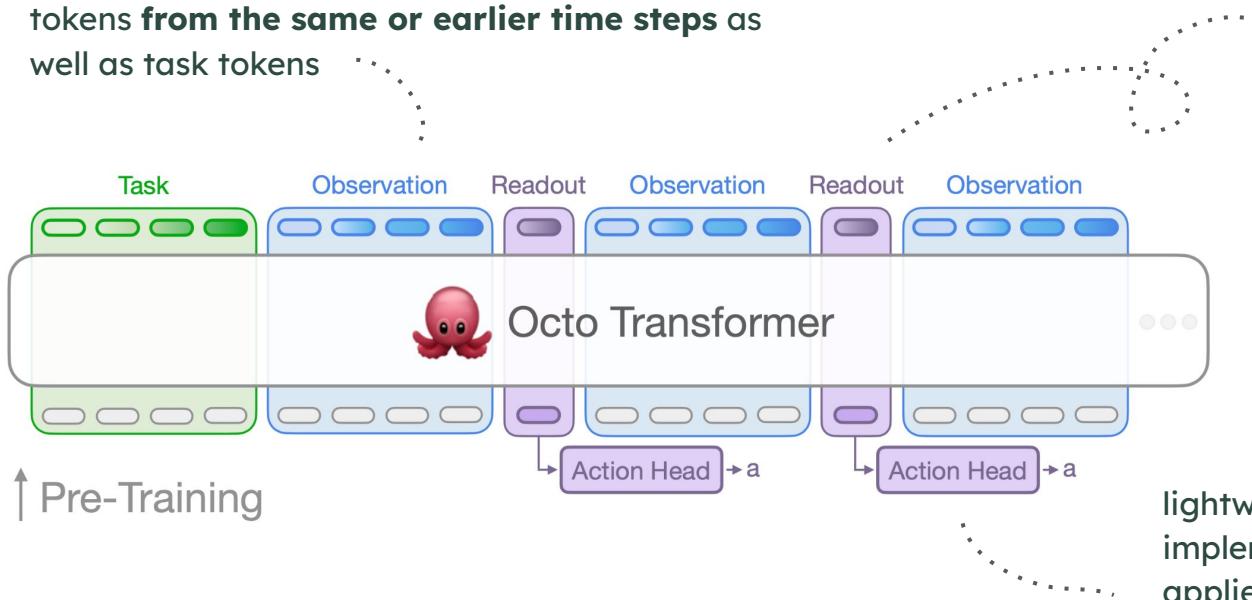


shallow CNN,
flattened patches



Octo pre-training: Backbone

observation tokens can only attend causally to tokens **from the same or earlier time steps** as well as task tokens

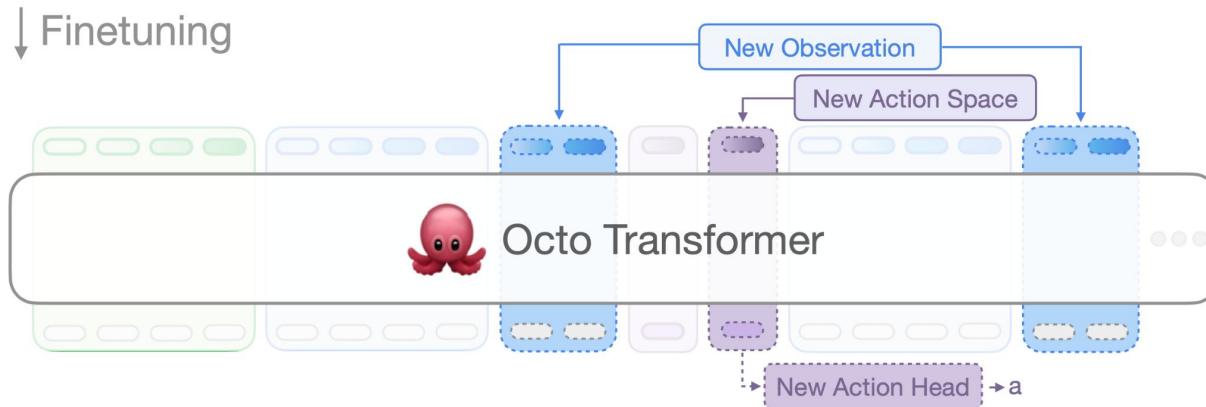


readout tokens is a compact vector embedding of the observation

lightweight “**action head**” that implements the **diffusion process** is applied to the embeddings for the readout tokens

Octo pre-training: Backbone

When adding new task, observations, loss functions, we can **fully retain the pretrained weights** of the transformer



Only adding new encoders or parameters in new head → **generalist model**

Octo: Dataset

Octo was trained on **800k trajectories** from the **Open X-Embodiment dataset**
(from 1.5M robot episodes)

CLVR, USC



RAIL, UC Berkeley

CILVR, NYU

AUTOLab, UC Berkeley

AiS, University of Freiburg

25 datasets

several robot **embodiments**, scenes

sensors and labels

remove **repetitive** datasets

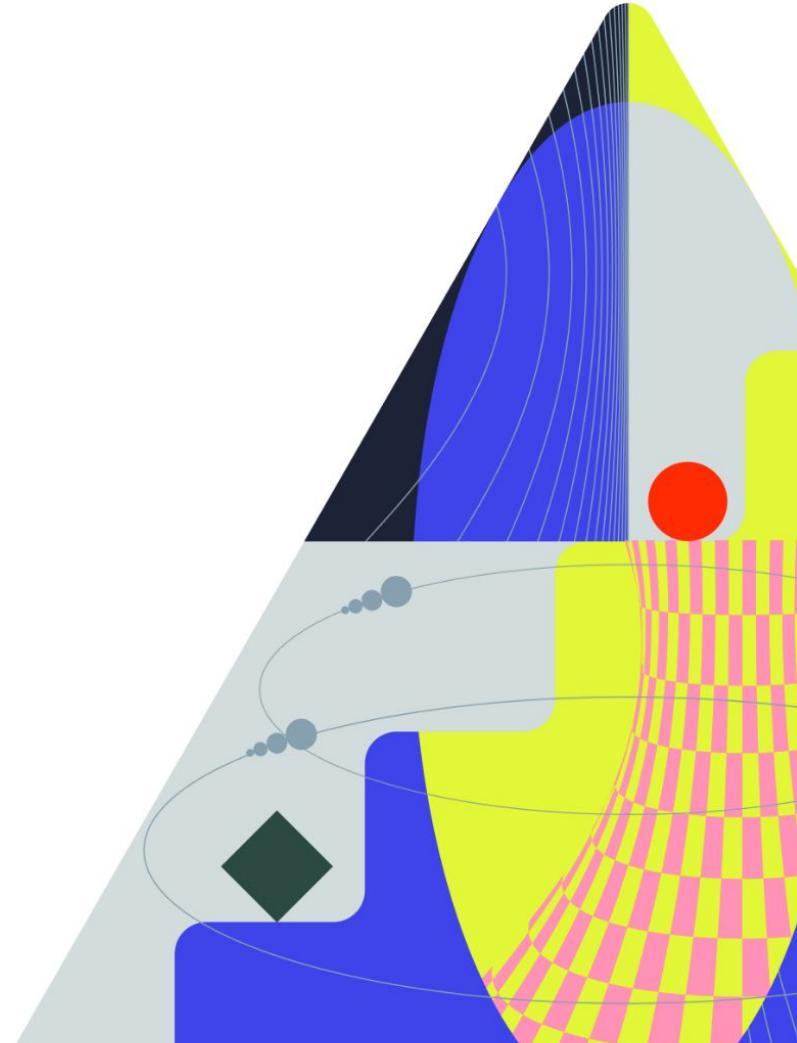
remove **low** image resolution

diverse dataset

Part 2

Agents

LLM & VLM guided
agents

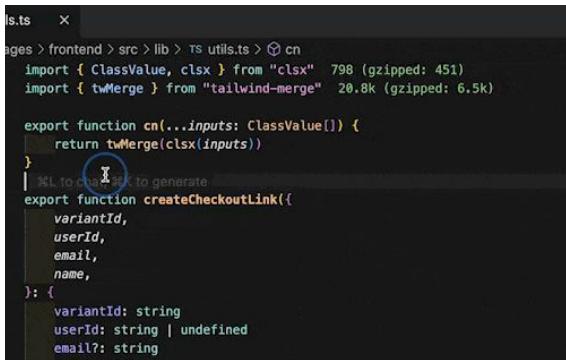


Who is the Agent?

Agent is a system capable of perceiving its **environment** and making **decisions** based on these perceptions to achieve specific **goals**

Who is the Agent?

Agent is a system capable of perceiving its **environment** and making **decisions** based on these perceptions to achieve specific **goals**



```
ts.ts  x
pages > frontend > src > lib > TS utils.ts > ↗ cn
  import { ClassValue, clsx } from "clsx"  798 (gzipped: 451)
  import { twMerge } from "tailwind-merge"  20.8k (gzipped: 6.5k)

  export function cn(...inputs: ClassValue[]) {
    return twMerge(clsx(inputs))
  }
  | ↗ L to change ↗ K to generate
  export function createCheckoutLink(
    variantId,
    userId,
    email,
    name,
  ): {
    variantId: string
    userId: string | undefined
    email?: string
    name?: string
  }

```

Cursor Code Editor

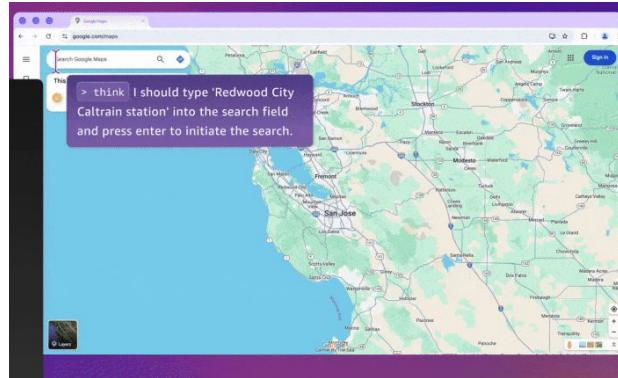
Who is the Agent?

Agent is a system capable of perceiving its **environment** and making **decisions** based on these perceptions to achieve specific **goals**

```
ts.ts x

ages > frontend > src > lib > TS utils.ts > cn
  import { ClassValue, clsx } from "clsx" 798 (gzipped: 451)
  import { twMerge } from "tailwind-merge" 20.8K (gzipped: 6.5k)

  export function cn(...inputs: ClassValue[]): string {
    return twMerge(clsx(inputs))
  }
  |  XML to classX to generate
  export function createCheckoutLink({
    variantId,
    userId,
    email,
    name,
  }: {
    variantId: string
    userId: string | undefined
    email?: string
  }) {
    const variant = variants.find((v) => v.id === variantId)
    const user = users.find((u) => u.id === userId)
    const nameParts = name
      ? name
      : [user?.firstName, user?.lastName].filter(Boolean)
      .join(" ")
    const emailParts = email
      ? email
      : [user?.email].filter(Boolean)
      .join(" ")
    const href = `${process.env.NEXT_PUBLIC_APP_URL}/checkout?variantId=${variantId}&userId=${userId}&email=${email}&name=${nameParts}&email=${emailParts}`
    return (
      
        Continue to checkout
      
    )
  }
}
```

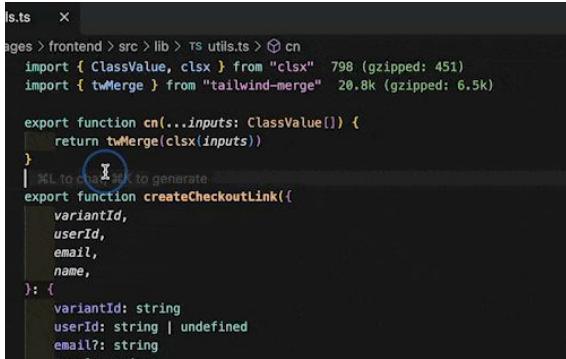


Cursor Code Editor

Amazon Nova Web Agent

Who is the Agent?

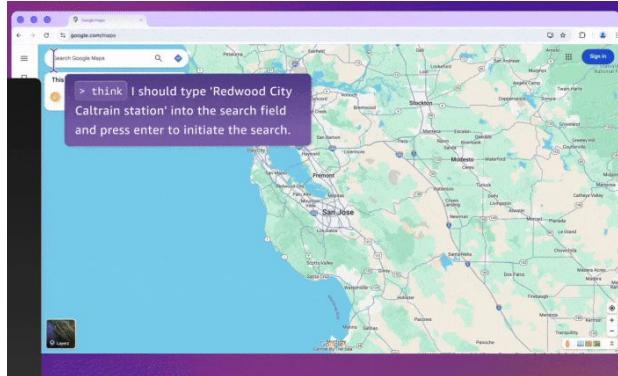
Agent is a system capable of perceiving its **environment** and making **decisions** based on these perceptions to achieve specific **goals**



```
ls.ts  x
pages > frontend > src > lib > TS utils.ts > cn
  import { ClassValue, clsx } from "clsx"  798 (gzipped: 451)
  import { twMerge } from "tailwind-merge"  20.8k (gzipped: 6.5k)

  export function cn(...inputs: ClassValue[]): string
    return twMerge(clsx(inputs))
  }
  | ML to change CN to generate
  export function createCheckoutLink({
    variantId,
    userId,
    email,
    name,
  }: {
    variantId: string
    userId: string | undefined
    email?: string
  }) {
    const variantId = variantId || "1"
    const userId = userId || "1"
    const email = email || "1@1.com"
    const name = name || "1"
    const href = `https://www.example.com/checkout?variantId=${variantId}&userId=${userId}&email=${email}&name=${name}`
    return href
  }
}
```

Cursor Code Editor

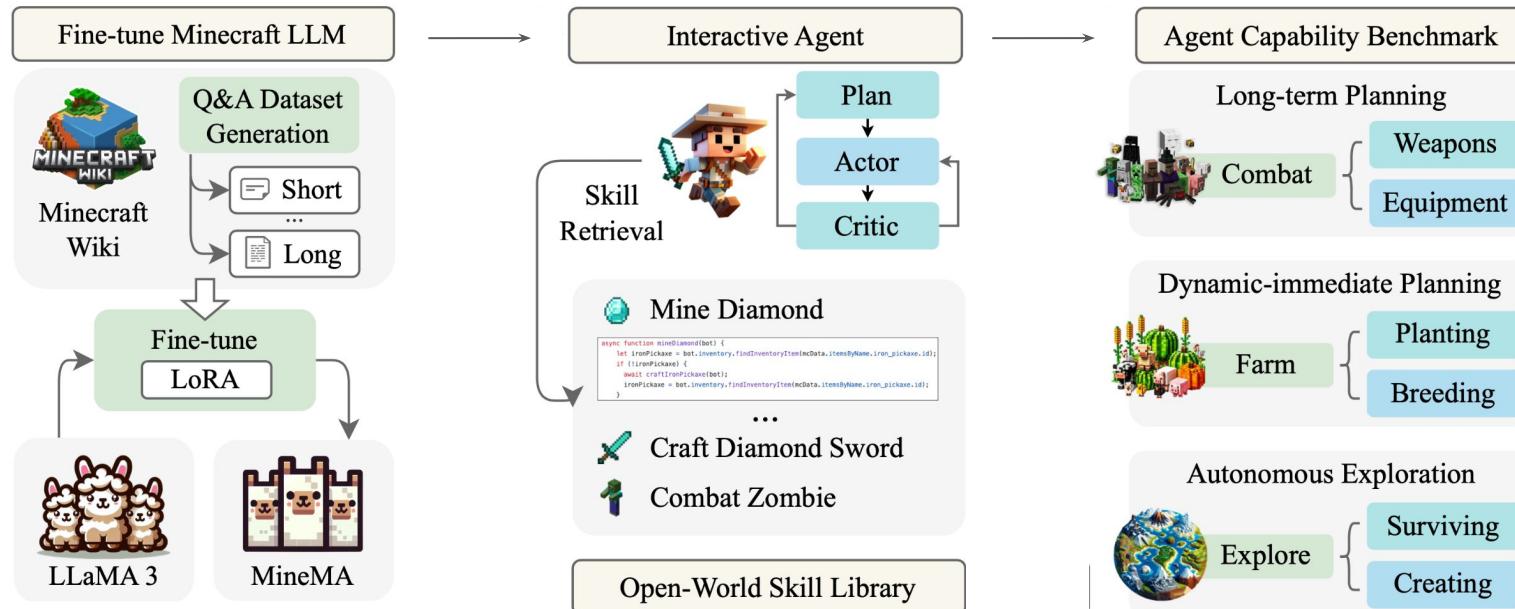


Amazon Nova Web Agent

Minecraft game

Odyssey: Pipeline (Oct 2024)

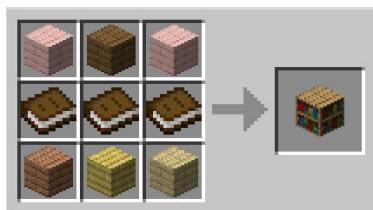
Odyssey — new framework that empowers **Large Language Model (LLM)-based agents** with open-world skills to explore the vast Minecraft world



Odyssey: Minecraft Wiki

To improve agent performance in Minecraft, we fine-tune the **LLaMA-3 model** using a large-scale Q&A dataset with **390k+ instruction entries** sourced from the **Minecraft Wiki**

Crafting:



Odyssey: Minecraft Wiki

To improve agent performance in Minecraft, we fine-tune the **LLaMA-3 model** using a large-scale Q&A dataset with **390k+ instruction entries** sourced from the **Minecraft Wiki**

Passive mobs:

Hostile mobs:

Odyssey: Interactive Agent

Efficient **retrieval of skills** is provided by generating a description for each skill by calling the LLM - **Sentence Transformer** to encode each skill

collectItem.js

```
if (!mob) {  
  bot.chat("Could not find a mob.");  
  return false;  
}  
// kill the mob using the sword  
await equipBestTool(bot, tool);  
await killMob(bot, mob.name, 300);  
// collect the dropped items  
await bot.pathfinder.goto(new GoalBlock(mob.position.x,  
mob.position.y, mob.position.z));  
bot.chat("Collected dropped items.");
```

LLM-based agent employs a **planner-actor-critic** architecture to define which actions to do

- **40** primitive skills
- **183** compositional skills

Odyssey: Interactive Agent

1 LLM Planner – breaks down high-level goals into specific low-level subgoals

a) **Ultimate goal** = I want to breed cow and collect items from it.

b) **State of the agent**

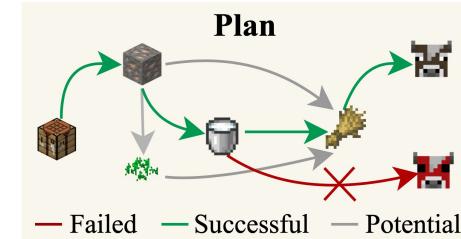
[Position]: x=2134.5, y=69.0, z=769.5

[Time] day

[Nearby blocks] dirt, grass, oak_log

[Nearby entities] horse, pig

c) **Achievements**

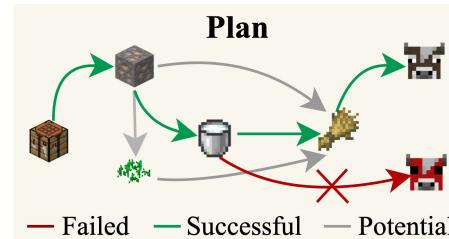
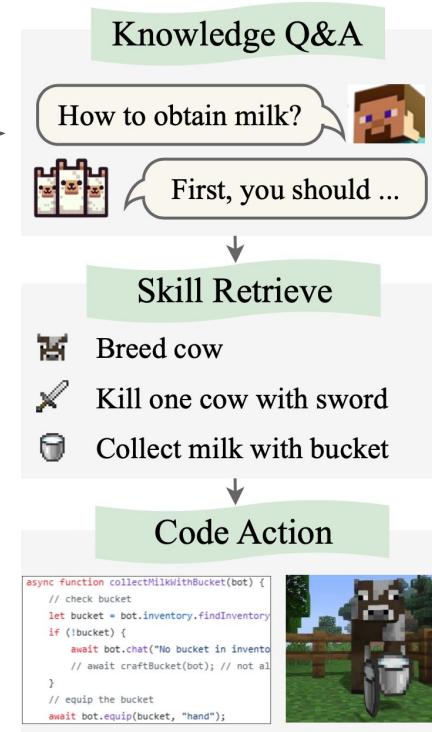


Odyssey: Interactive Agent

2

LLM Actor – invoked to sequentially execute the subgoals generated by the LLM planner within the Minecraft environment

- a) Query context
- b) Similarity matching
- c) Skill Selection



Odyssey: Interactive Agent

3 LLM Critic – noting successful outcomes and failure points, refine strategy

- a) Execution Feedback
- b) Self-validation
- c) Self-reflection

Code Action

```
async function collectMilkWithBucket(bot) {  
  // check bucket  
  let bucket = bot.inventory.findInventory  
  if (!bucket) {  
    await bot.chat("No bucket in inventory")  
    // await craftBucket(bot); // not al  
  }  
  // equip the bucket  
  await bot.equip(bucket, "hand");  
}
```

<bot> I can make crafting_table
<bot> I did the recipe for crafting_table 1 times
<bot> Crafted a crafting_table.
<bot> No block to place crafting_table on. You cannot place a floating block.
<bot> Craft without a crafting_table

[Lack of pre-requirements]

Execution Feedback I cannot collect milk without a .

Feedback [Environment feedback]

I could not find a to collect milk.

Self-validation:

Observation

My subgoal is to:

collect milk

last_inventory (16/36): ...

cur_inventory (18/36): ...

Self-reflection:

Rethink

You should analysis the reason why my subgoal is failed based on the logs provided.

Thought

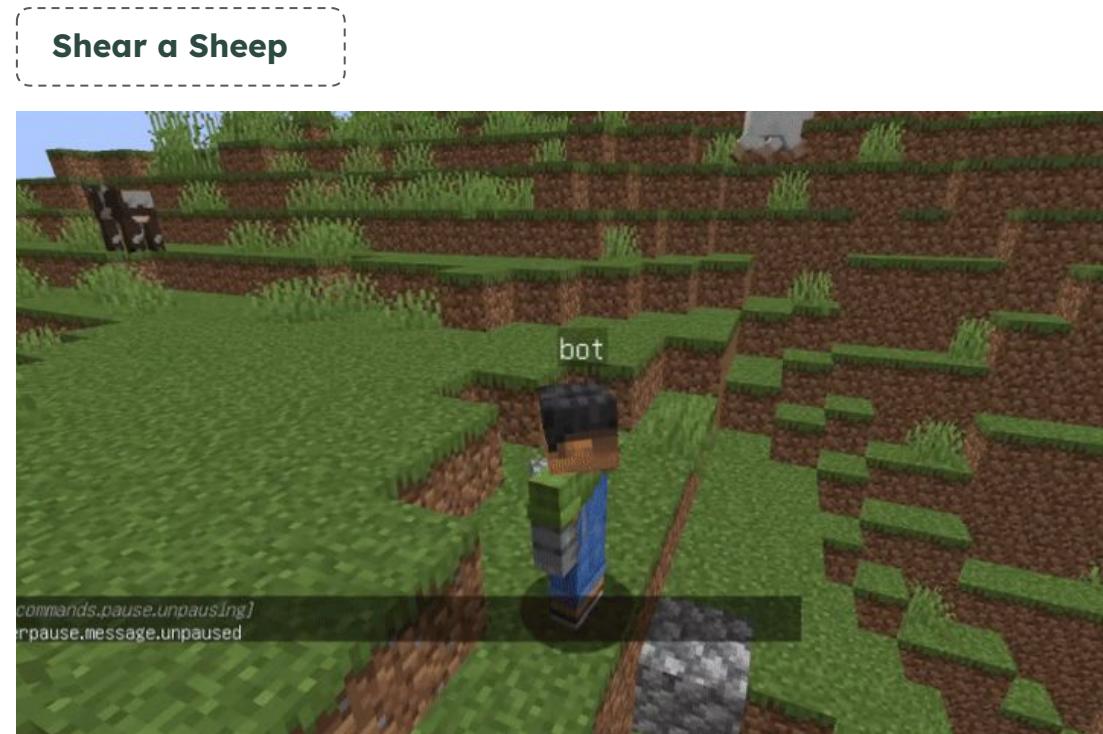
Based on changes of my inventory, is my subgoal successful? 🤔

Critic

Since you only have , you might need the to attract a for milk.

Odyssey: Examples

- Use **GPT-3.5** and **GPT-4** for initial data generation
- All experiments are conducted with the open-source **LLaMA-3 model**
- Simulation environment is built on top of **Voyager**



Odyssey: Examples

- Use **GPT-3.5** and **GPT-4** for initial data generation
- All experiments are conducted with the open-source **LLaMA-3 model**
- Simulation environment is built on top of **Voyager**

Mining diamonds from scratch

Odyssey: Examples

- Use **GPT-3.5** and **GPT-4** for initial data generation
- All experiments are conducted with the open-source **LLaMA-3 model**
- Simulation environment is built on top of **Voyager**

