

Text classification

Vlad Shakhuro

2 October 2025

Outline

- I. Classification tasks
- 2. General pipeline
- 3. Generative and discriminative models
- 4. Classical methods
- 5. Neural methods

Classification tasks

- Binary
- Multi-class
- Multi-label

Classification datasets

Dataset	Type	Number of labels	Size (train/test)	Avg. length (tokens)
SST	sentiment	5 or 2	8.5k / 1.1k	19
IMDb Review	sentiment	2	25k / 25k	271
Yelp Review	sentiment	5 or 2	650k / 50k	179
Amazon Review	sentiment	5 or 2	3m / 650k	79
TREC	question	6	5.5k / 0.5k	10
Yahoo! Answers	question	10	1.4m / 60k	131
AG's News	topic	4	120k / 7.6k	44
Sogou News	topic	6	54k / 6k	737
DBPedia	topic	14	560k / 70k	67

Outline

I. Classification tasks

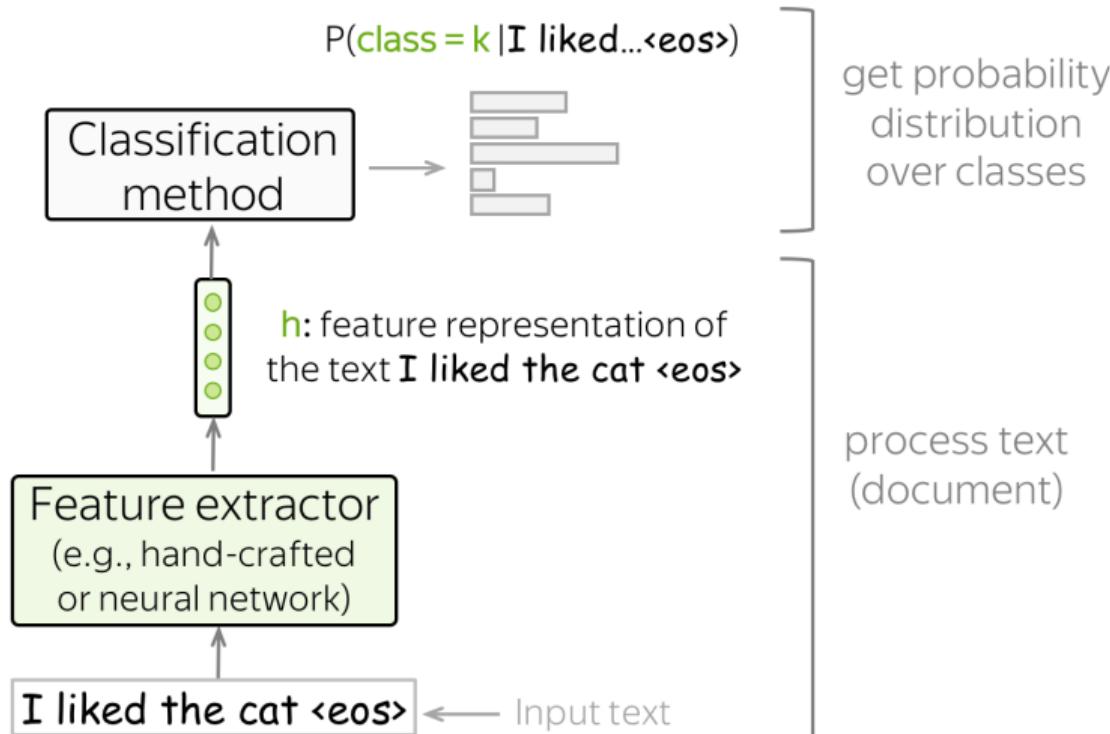
2. General pipeline

3. Generative and discriminative models

4. Classical methods

5. Neural methods

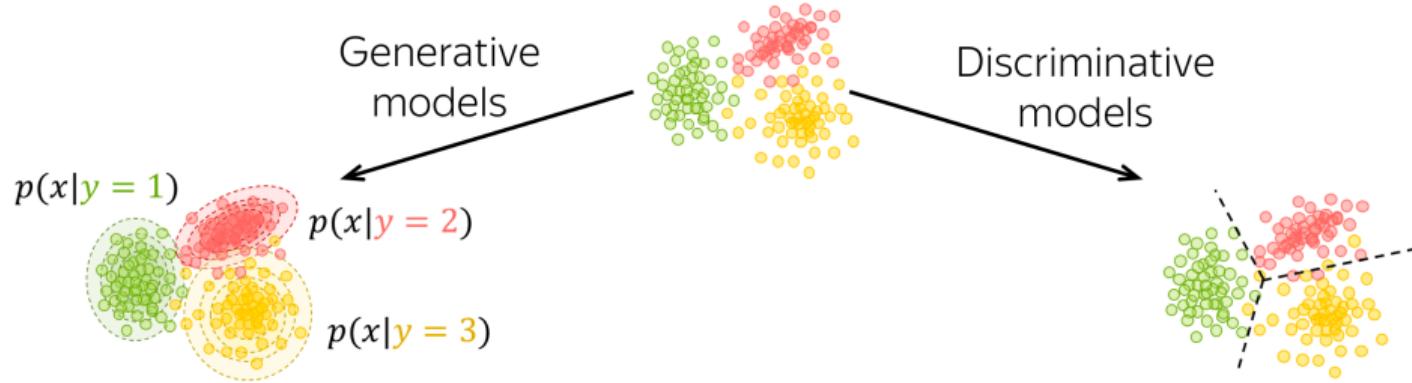
Obtain features and classify them



Outline

1. Classification tasks
2. General pipeline
3. Generative and discriminative models
4. Classical methods
5. Neural methods

Generative and discriminative models



Learn: data distribution $p(x, y) = p(x|y) \cdot p(y)$

How predict: $y = \arg \max_k P(x, y = k) =$
 $= \arg \max_k P(x|y = k) \cdot P(y = k)$

Learn: boundary between classes $p(y|x)$

How predict: $y = \arg \max_k P(y = k|x)$

Outline

1. Classification tasks
2. General pipeline
3. Generative and discriminative models
4. Classical methods
5. Neural methods

Naive Bayes

$$y^* = \arg \max_k P(y = k | x) = \arg \max_k \frac{P(x | y = k)P(y = k)}{P(x)} =$$

$$\arg \max_k P(x | y = k)P(y = k)$$

Naive Bayes

$$y^* = \arg \max_k P(y = k | x) = \arg \max_k P(x | y = k)P(y = k) = \arg \max_k P(x, y = k)$$

Naive Bayes

$$y^* = \arg \max_k P(y = k | x) = \arg \max_k P(x | y = k)P(y = k) = \arg \max_k P(x, y = k)$$

$$P(x | y = k) = P(x_1, \dots, x_n | y = k) = \prod_{i=1}^n P(x_i | y = k)$$

Naive assumption:

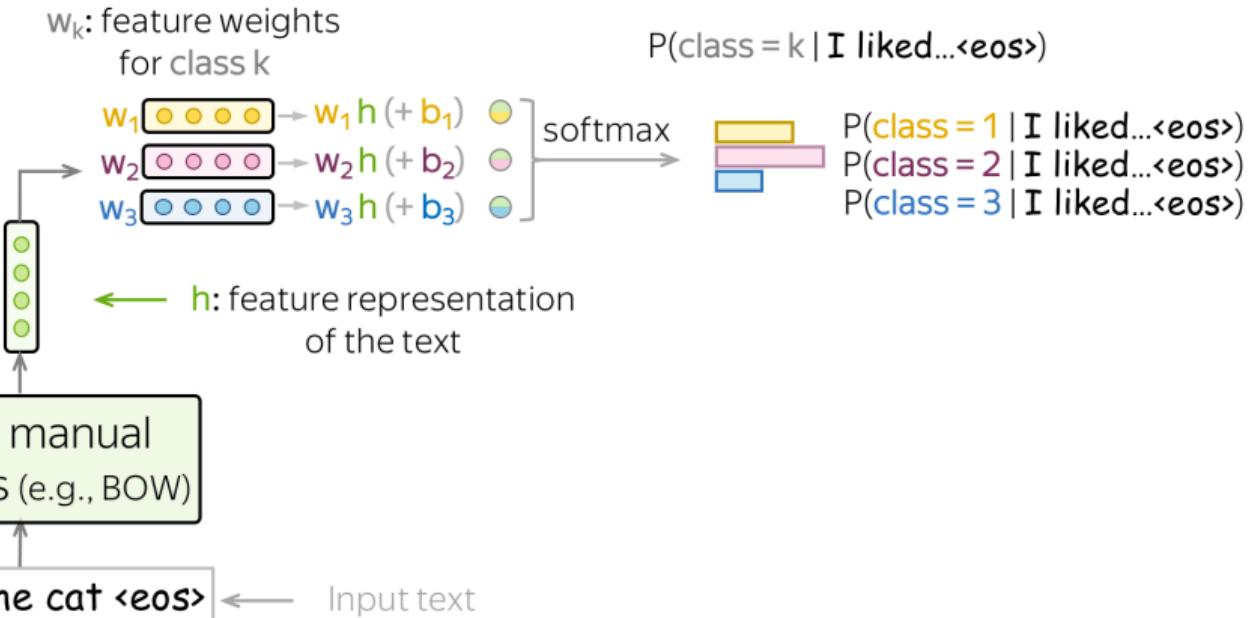
- **bag of words** – word order doesn't matter
- **conditional independence** – features (words) are independent given the class

Now we can compute probabilities simply by counting frequencies in the training data

Logistic regression

$$y^* = \arg \max_k \frac{\exp(w_k h)}{\sum_{i=1}^K (w_i h)}$$

Weigh features: take dot-product of h with feature weights for each class



Training: maximizing likelihood

$$\log P(y = k | x) \rightarrow \max$$

$$-\log P(y = k | x) \rightarrow \min$$

$$-\sum_{i=1}^K p_i^* \log P(y = i | x) \rightarrow \min$$

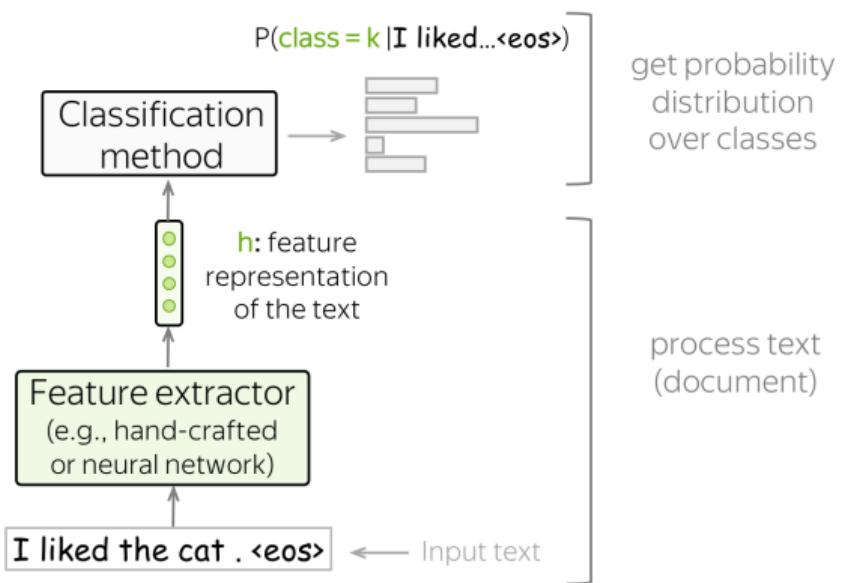
$$(p_k^* = 1, p_i^* = 0, i \neq k)$$

Outline

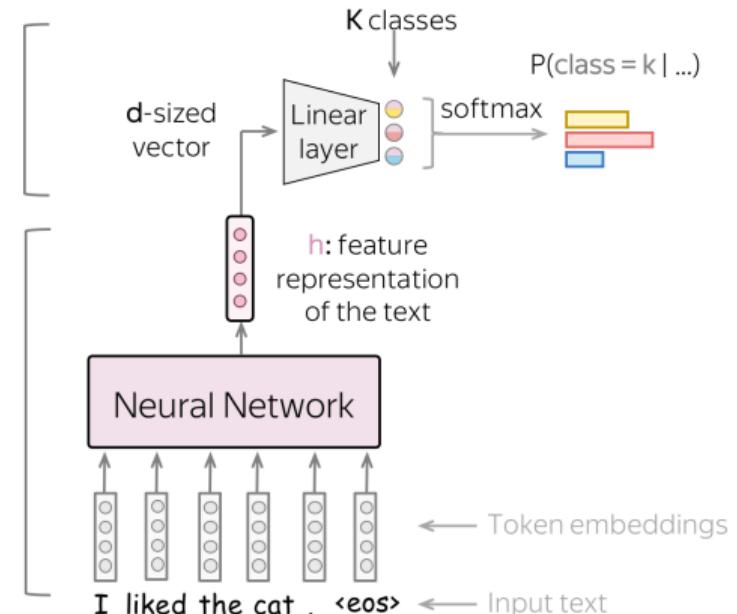
1. Classification tasks
2. General pipeline
3. Generative and discriminative models
4. Classical methods
5. Neural methods

Neural networks in general

General Classification Pipeline



Classification with Neural Networks



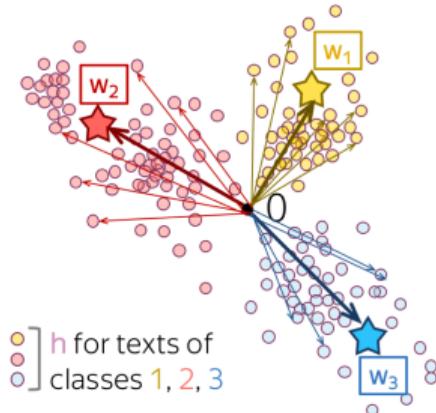
Neural networks in general

$$\begin{array}{c} \text{h}^T \times \text{Linear layer} \\ : \\ \text{h}^T \end{array} \quad \begin{array}{c} \text{vectors } w_1, w_2, w_3 \\ \downarrow \\ h^T \times X + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \end{array}$$

h - vector representation of the input text w_1, w_2, w_3 - vector representations of classes

What NN learns (hopefully):

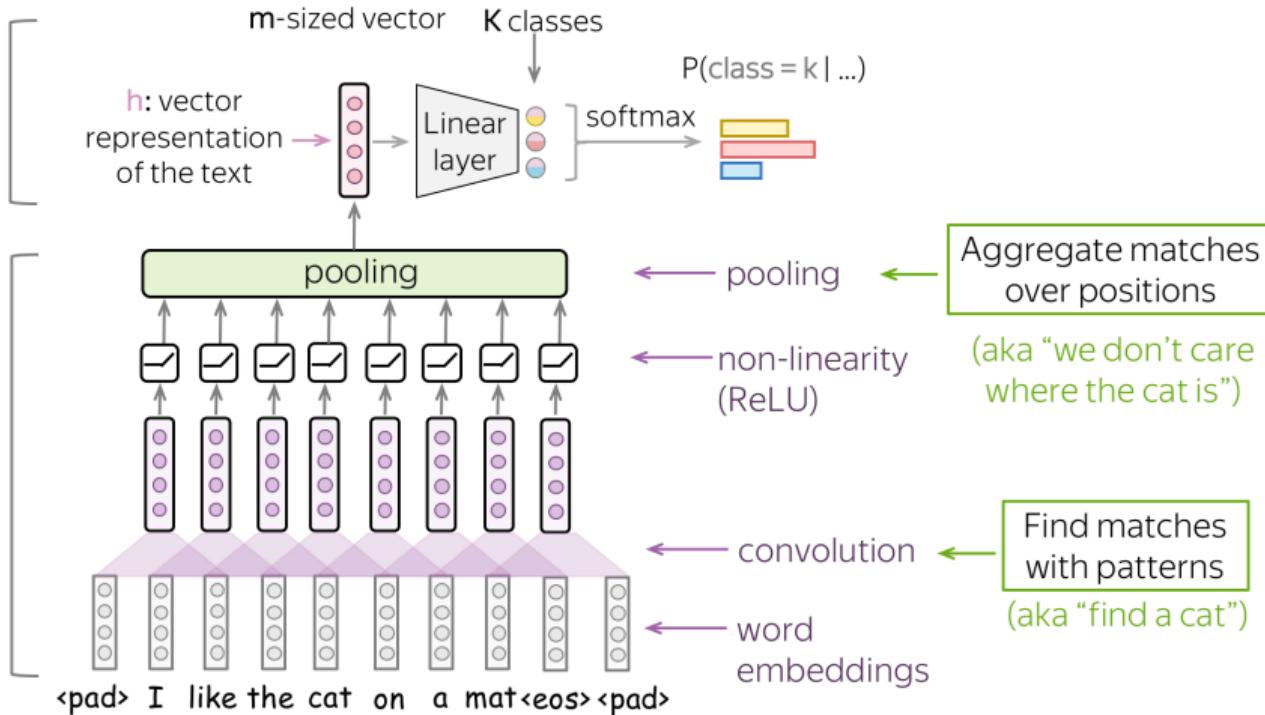
Text vectors point in the direction of the corresponding class vectors



Convolutional networks in CV

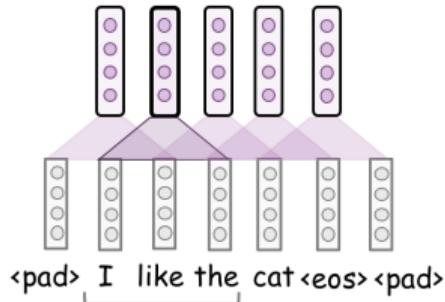
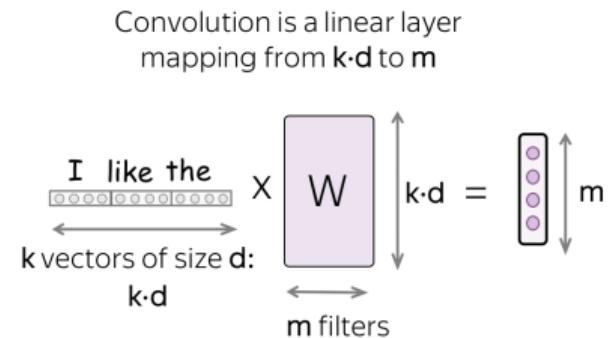
Convolutional networks for text

Standard part
(same for all NNs):
get probability
distribution

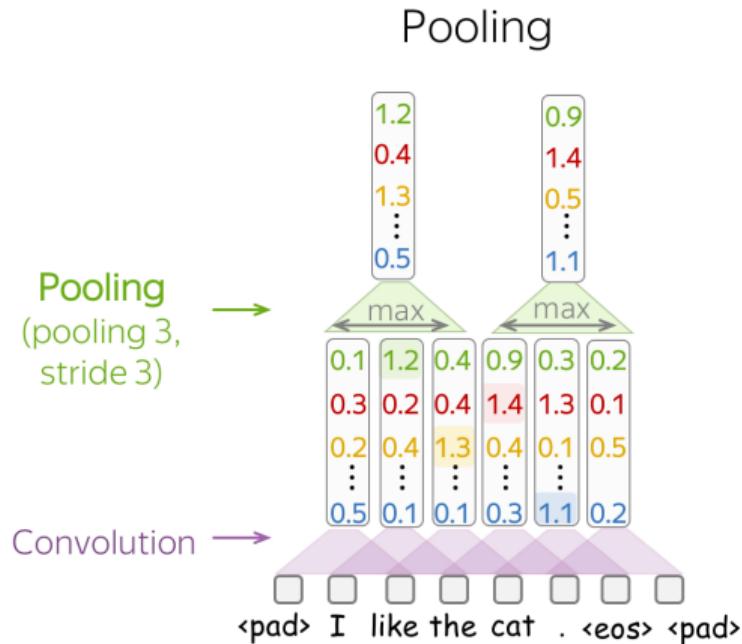
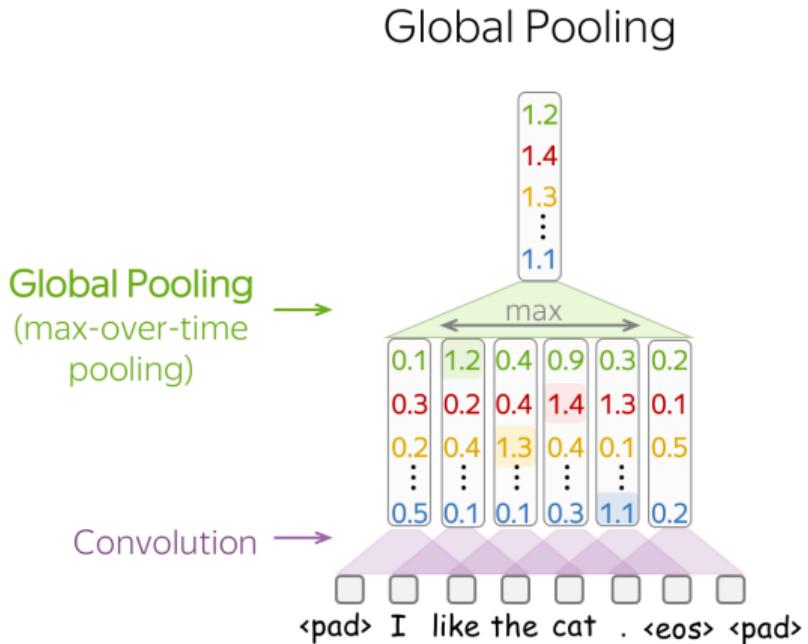


Specific to CNNs:
process text
(document)

Convolution operation



Pooling



What convolutional networks learn?

filter	Top n-gram	Score
--------	------------	-------

1	poorly designed junk	7.31
2	simply would not	5.75
3	a minor drawback	6.11
4	still working perfect	6.42
5	absolutely gorgeous .	5.36
6	one little hitch	5.72
7	utterly useless .	6.33
8	deserves four stars	5.56
9	a mediocre product	6.91

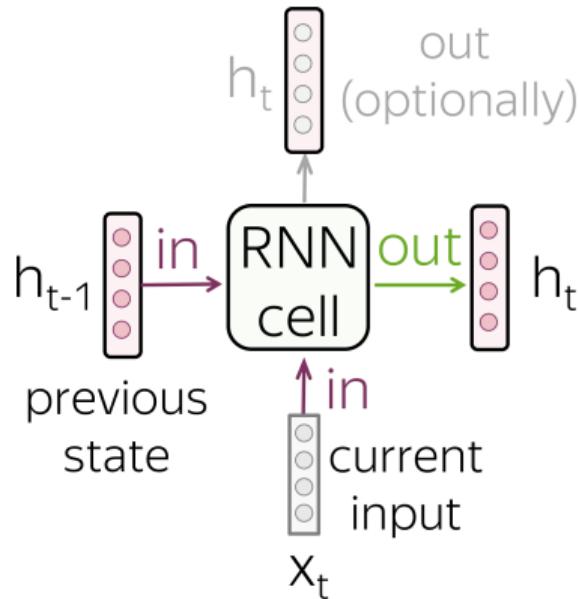
Top n-grams for filter 4	Score
--------------------------	-------

1	still working perfect	6.42
2	works - perfect	5.78
3	isolation proves invaluable	5.61
4	still near perfect	5.6
5	still working great	5.45
6	works as good	5.44
7	still holding strong	5.37

A filter activates for a family of n-grams with similar meaning

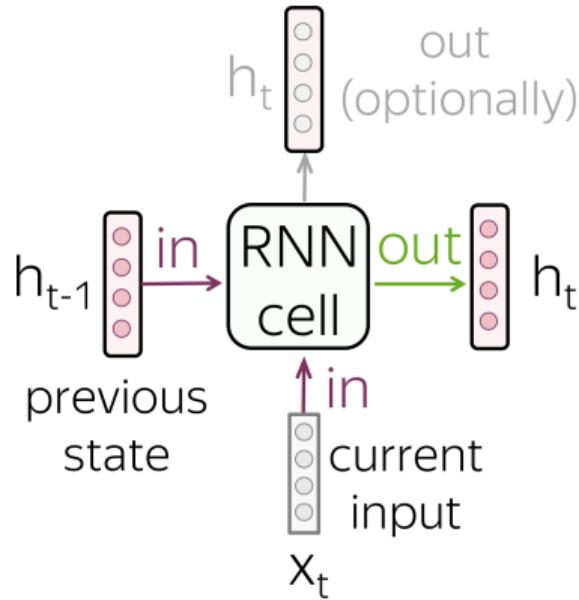
Recurrent networks

RNN cell

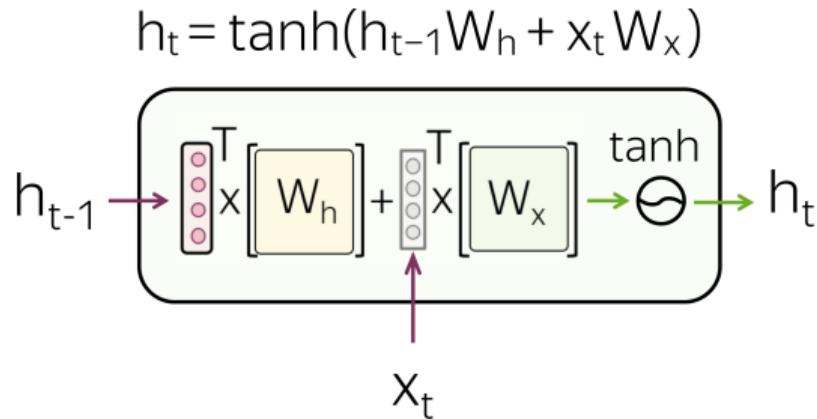


Recurrent networks

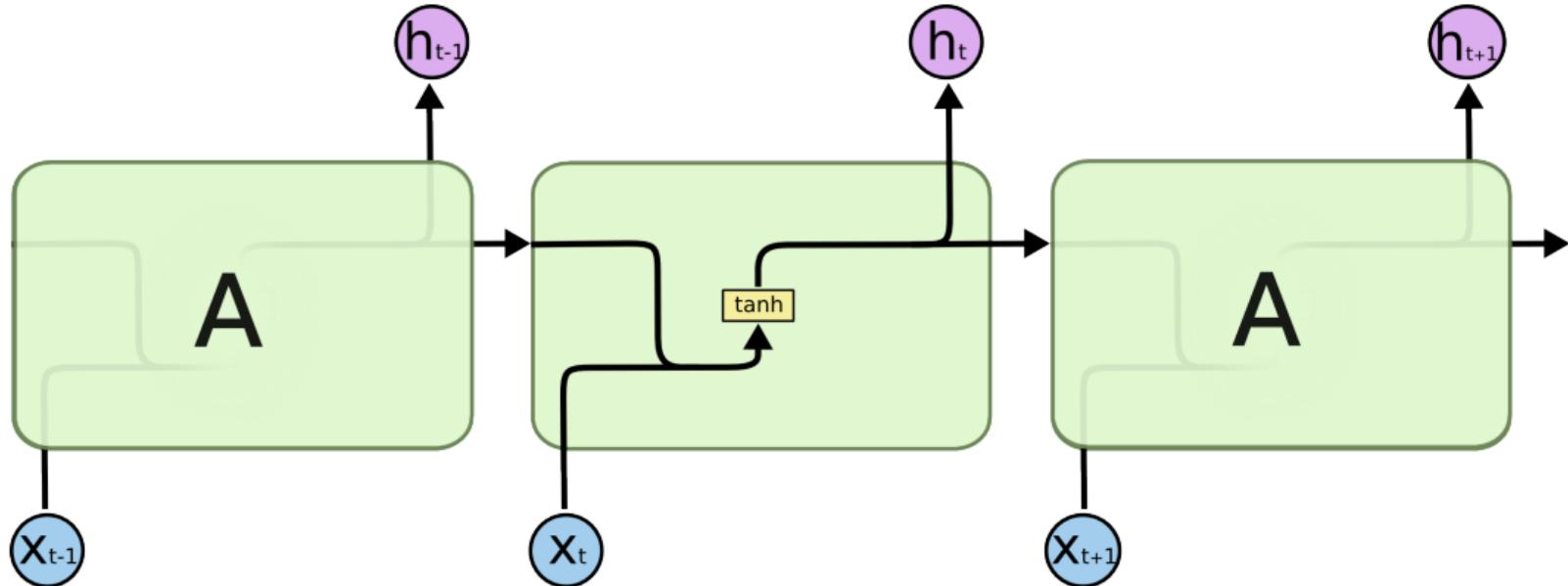
RNN cell



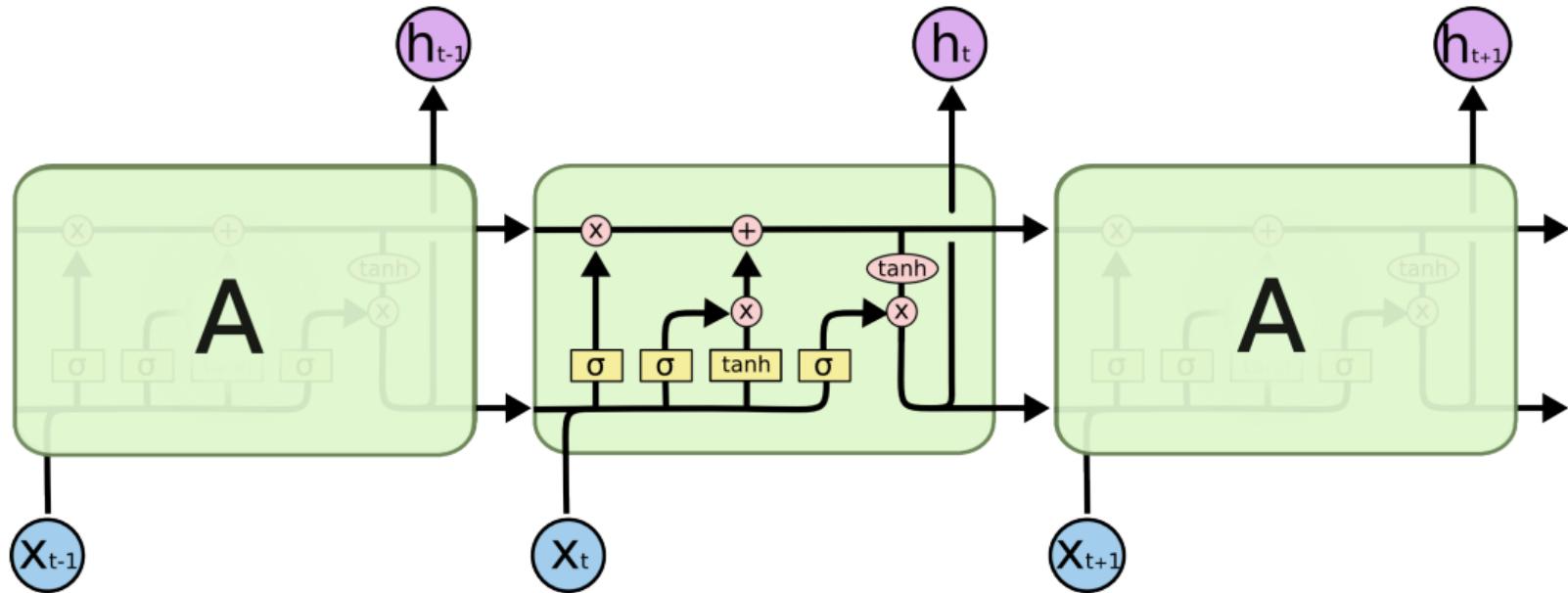
vanilla RNN



RNN

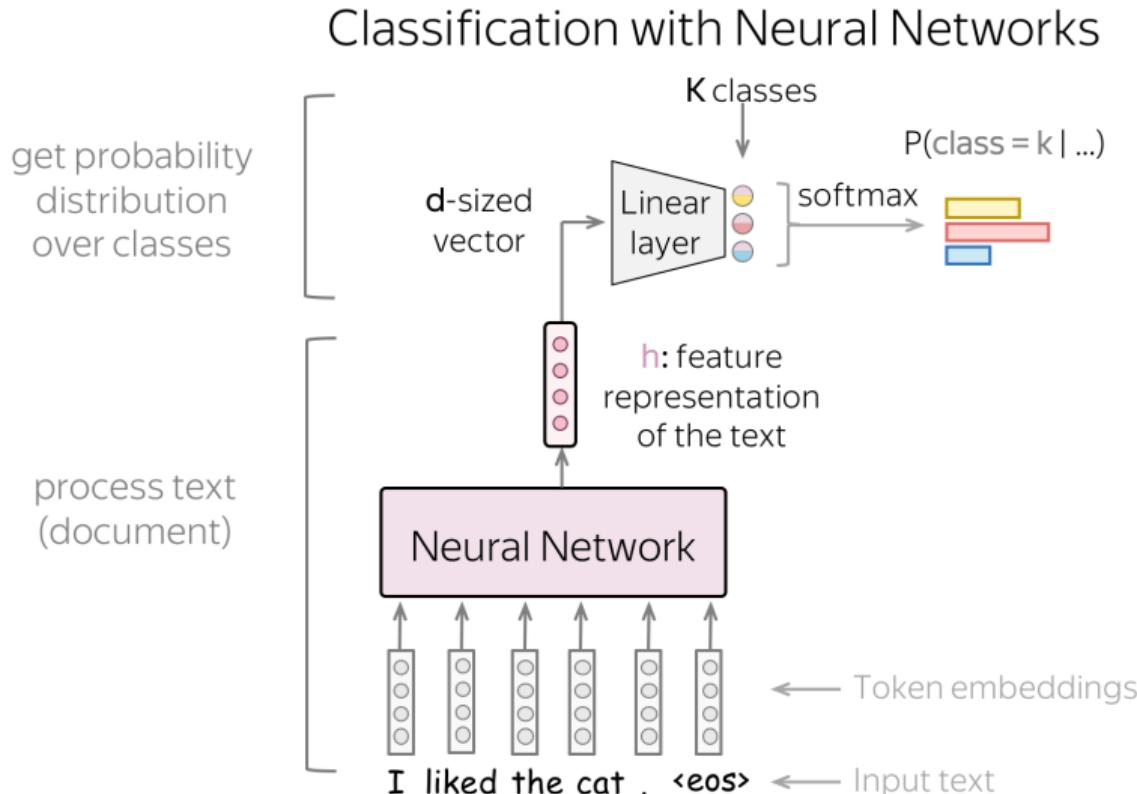


Long short-term memory (LSTM)



<https://colah.github.io/posts/2015-08-Understanding-LSTMs/>

Training from scratch and finetuning



Conclusion

We reviewed following topics:

- classification task and datasets
- general classification pipeline
- generative and discriminative models
- classical methods: naive bayes and logistic regression
- neural networks: convolutional, recurrent